0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能将成为工业物联网的核心运算架构

OaXG_jingzhengl 来源:未知 作者:胡薇 2018-07-20 17:35 次阅读

智能化是近年来制造业最重要的趋势,历经过去几年的市场教育,这两年市场询问度已开始提高,而从2016年开始,IT产业掀起人工智能(AI)热潮,AI与物联网的整合将成为未来各垂直领域的主流系统,在制造业中,AI也将成为工业物联网的核心运算架构之一。

自从德国率先喊出工业4.0后,相关科技也同步的突飞猛进,包括工业物联网、大数据分析、机器人等技术发展至今,已渐渐打造出新型态的智能工厂与全新的工业化标准。

尤其近几年来,人工智能(AI)浪潮袭来,更赋予工业4.0有了全新的发展面向,明确分野自动化及智动化的差异,包括机器视觉深度学习等利用算法分析为主的人工智能技术,已成为工业4.0未来发展的全新趋势,不仅让自动化与机器人的技术更为精准、制造业也开始进入如无人工厂等全新的科技领域。

图1 : 自动化是现在工业的技术根基,AI导入将全面提升自动化系统的效益。(Source: BSOCH)

智能制造有三大趋势

首先是生产网络,这部分主要是应用制造运行管理系统(Manufacturing Operations Management, MOM),协助生产价值链中的供货商获得并交换实时生产信息,供货商所提供的全部零组件都可在正确的时间以正确的顺序到达生产线,

第二个趋势是虚拟仿真与真实物理系统的完美融合,在生产制造过程中的每一步都将在虚拟世界被设计、模拟及优化,为真实的物理世界包括物料、产品、工厂等建立起一个高度仿真的数字双生(Digital Twin,Twin Model),

第三个趋势则是网宇实体系统(Cyber-Physical System,CPS),在此系统中,产品信息都将被输入到产品零组件本身,它们会根据自身生产需求,直接与生产系统和设备沟通,发出下一道生产工序指令,指挥设备自行组织生产,这种自主生产模式能够满足每位用户的订制化需求。

以大数据建立运算模式

上述的三大趋势,未来都会与AI有一定程度的整合,例如在产线监控、机器人、无人搬运车等,都将有AI运算功能设计,主因在于大量订制化的趋势,工厂需要面对的产品类型、产线调动等各种生产情境的难度也会大增,虽然透过传感器及大数据分析,管理者已经可以掌握更多用来帮助决策的信息,但也因为信息量大量增加,增加管理者的信息分析压力,加上市场变化愈来愈快速,人类的分析速度恐怕已经愈来愈难跟上提供速度愈来愈快的前端数据,自然也就更难让制造现场的机台能够迅速反应客户需求,AI应用于制造业,将可让系统从大数据分析找出规律性建立模式,进而学习避免前面发生的错误,甚至做到提前预测,应用于制造领域,不仅可以缩短停机时间,更可适时做出产线调整,减少呆料及废料的发生频率。

图2 : 连网是工业物联网架构的基础,未来AI将会分析设备设网所取得的大量数据,作出具智能的判断与建议。(Source: Process on line)

对工业物联网来说,取得数据和分析数据是核心任务,而来自传感器的数据点经过多个阶段才能转化为可操作的见解,工业物联网平台包括可扩展的数据处理流程,能够处理需要立即关注的实时数据,以及仅在一段时间内有意义的数据,当检测到压力和温度阈值的异常组合之后,物联网平台关闭液化石油气灌装机可能已经太晚了,应该在毫秒之内检测到异常,然后依规则触发立即反应。

就目前发展来看,AI有几种算法,例如热点路径分析的核心是负责检测异常的规则引擎,物联网平台嵌入复杂的规则引擎,可以从传感器数据流动态评估复杂的模式,由了解模式和数据格式的领域专家来定义规则引擎的基准阈值和路由逻辑,这种逻辑作为规则引擎在编排讯息流中的关键输入,在数据点移动到数据处理流程下一个阶段之前,为每个数据点定义嵌套的语句条件,规则引擎已经成为物联网平台的核心,而机器学习的关键领域之一是从现有数据集中找到模式,将类似的数据点分组,并预测未来数据点的价值。

机器学习有关的高阶算法可用于分类和预测分析,由于这些算法可以从现有数据中学习,且大多数物联网数据都是基于时间序列,因此这些算法可以根据历史数据预测传感器的未来值,这些多种机器学习算法的组合,将可替代工业物联网平台中的传统规则引擎,虽然领域专家仍然需要根据条件定义采取行动,但这些智能算法提供更高的准确性和精准度。

AI + HI大幅提升效益

工业物联网中的机器学习最大应用之一是设备的预测性维护,透过关联性和分析模式变化来预测设备故障,并报告如设备的剩余使用寿命等关键指标,预测维护未来也可应用在航空航天、制造、汽车、运输、物流和供应链等领域,例如预测模型安排至汽车服务中心,在航空业中,预测维护方案的目标是根据维护历史和飞行路线讯息等相关数据来预测航班延迟或取消的可能性。

图3 : 在工业领域,AI与HI必须协力合作,方能创造系统最大价值。(Source:Universal Robot)

观察物联网的发展态势,目前工业物联网是所有垂直应用中,发展最快的类别之一,AI在工业物联网主要是协助操作者与管理者,筛选从大量设备撷取出的数据,并做出判断,但是目前的AI并无法做出具有逻辑性的决策,因此在制造领域,AI人工智能必须与人类智慧HI结合,才会是系统的最佳效益。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47205

    浏览量

    238272
  • 工业物联网
    +关注

    关注

    25

    文章

    2375

    浏览量

    64116

原文标题:工业物联网进入人工智能时代

文章出处:【微信号:jingzhenglizixun,微信公众号:机器人博览】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    2025年六大技术趋势:空间计算、人工智能、IT升级……

    12月13日,德勤发布《2025年技术趋势》(TechTrends2025)报告,深入探讨了人工智能在日常生活中逐步应用的广度与深度。报告指出,未来人工智能将成为我们生活中的核心组成部分。届时
    的头像 发表于 12-18 13:15 354次阅读
    2025年六大技术趋势:空间计算、<b class='flag-5'>人工智能</b>、IT升级……

    嵌入式和人工智能究竟是什么关系?

    了数据传输的压力,还提高了系统的响应速度。而在联网中,嵌入式系统更是一个核心的组成部分。通过将人工智能算法应用于
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    不仅提高了能源的生产效率和管理水平,还为未来的可持续发展提供了有力保障。随着技术的不断进步和应用场景的不断拓展,人工智能将在能源科学领域发挥更加重要的作用。 总结 《AI for Science:人工智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    农业、环保等,为人类社会的可持续发展做出贡献。 总结 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们展示了一个充满希望和机遇的未来。在这个未来中,人工智能将成为
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    深刻认识到人工智能在推动科学进步中的核心价值。它不仅是科技进步的加速器,更是人类智慧拓展的催化剂,引领我们迈向一个更加智慧、高效、可持续的科学研究新时代。
    发表于 10-14 09:12

    工业联网人工智能融合创新 解锁新型工业

    人工智能是引领新一轮科技革命和产业变革的战略性技术,具有溢出带动性很强的“头雁”效应。当前,我国工业联网正迈入规模化发展的新阶段,人工智能工业
    的头像 发表于 10-11 11:06 420次阅读

    risc-v在人工智能图像处理应用前景分析

    满足人工智能图像处理中对于高性能、低功耗和特定功能的需求。 低功耗 : 在人工智能图像处理中,低功耗是一个重要的考量因素。RISC-V架构的设计使其在处理任务时能够保持较低的功耗水平,这对于需要
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家一起去了解: 人工智能究竟帮科学家做了什么? 人工智能将如何改变我们所生
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于一体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息化部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能产业协会主办
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能
    发表于 05-10 16:46

    5G智能联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    https://t.elecfans.com/v/27186.html *附件:引体向上测试案例_20240126.pdf 人工智能 工业检测:芯片模组外观检测实训part1 11分40秒 https
    发表于 04-01 10:40

    创龙教仪基于瑞芯微3568的ARM Cortex A-55教学实验箱 适用于人工智能 传感器 联网等领域

    采用ARM架构的通用型SoC,主要应用于智能硬件和工业应用。CPU采用四核A55架构处理器,集成Mali G52图形处理器和独立的人工智能N
    发表于 03-22 14:29

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能
    发表于 02-26 10:17

    2024年工业行业转型展望

    ,并日益成为工业流程不可或缺的一部分。机器智能的提升使企业能够更有效地分析大数据,优化决策过程并开发创新的解决方案。行业专家预测,到2024年底,人工智能将在预测性维护、质量控制甚至定
    发表于 02-23 16:55