0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

谷歌新的循环神经网络技术是否对模仿生物的人工智能有帮助?

人工智能和机器人研究院 2018-07-21 09:48 次阅读

人类对于生物大脑的探索是永无止境的,模仿生物的人工智能是否可以帮助我们进行研究?最近,来自谷歌的研究人员提出了一种新的循环神经网络,它可以快速构建生物大脑的 3D 神经模型。谷歌称,新的方法可以「将连接组学提升一个数量级」。目前,该研究的论文已经发表在Nature 子刊《Nature Methods》上。

连接组学旨在综合描绘在神经系统中发现的神经网络结构,以更好地理解大脑的运作模式。这一过程需要对大脑组织进行纳米级的 3D 成像(通常使用电子显微镜),然后分析成像数据结果以追踪大脑的神经突触并识别单个突触连接。由于成像分辨率高,即使是一立方毫米的大脑组织也能产生 1000 多 TB 的数据!这些图像中的结构相当复杂、精细,因此大脑成像的主要瓶颈在于数据的自动解读,而非获取。

如今,谷歌与马克斯-普朗克神经生物学研究所的研究人员合作,在《Nature Methods》杂志上发表了一篇名为《High-Precision Automated Reconstruction of Neurons with Flood-Filling Networks》的论文。该论文介绍了一种新型的循环神经网络,该网络在自动解读连接组学数据的准确性方面比以往的深度学习技术提高了一个数量级。

基于泛洪算法网络(Flood-Filling Network)的 3D 图像分割

追踪大量电子显微镜数据中的神经突触是图像分割问题的一个实例。传统的算法将该过程至少分为两步:利用边缘检测器或机器学习分类器找到神经突触之间的边界,然后使用分水岭或图像分割等算法将未被边界分隔的图像像素组合在一起。2015 年,我们开始尝试一种基于循环神经网络的替代方法,将这两个步骤统一起来。该算法被嵌在特定的像素位置,然后使用循环卷积神经网络迭代地「填充」某一区域,该循环卷积神经网络用来预测哪些像素属于与种子相同的对象。自 2015 年以来,我们一直致力于将这种新方法应用于大规模的连接组学数据集,并严格量化其准确率。

在 2D 图像中分割物体的泛洪算法网络。黄点是当前焦点区域的中心;该算法在迭代检查更多图像区域的同时扩展分割区域(蓝色)。

通过预期运行长度测量准确率

我们与马克思·普朗克研究所的研究人员合作,设计了一种被称之为「预期运行长度」(ERL)的度量标准,它测量以下内容:给定大脑 3D 图像中随机神经元内的随机点,在出错前,我们能追踪神经元多远?这是一个典型的「平均故障间隔时间」问题,只不过在这里我们测量的是故障间隔的空间量而不是时间量。对于工程师来说,ERL 的吸引力在于它将线性物理路径长度与算法产生的个别错误的频率关联起来,并且可以直接计算。对于生物学家来说,吸引力在于 ERL 的特定数值与生物相关的量相关,例如神经系统不同部分中神经元的平均路径长度。

预期运行长度(蓝线)的进展带来了今天在《Nature Methods》上共享的结果。红线表示「合并率」的进展,合并率测量两个分离的神经突被错误地追踪为单个目标的频率;达到非常低的合并率对于实现手动识别和校正重建中剩余误差的有效策略至关重要。

图像分割过程

鸣禽连接组学

我们用 ERL 测量了一百万立方微米斑胸草雀大脑中一组基本真实神经元的进展,斑胸草雀大脑通过我们的合作伙伴使用肖特基场发射扫描电子显微镜而成像。实验结果发现我们的方法优于之前应用于同一数据集的其他深度学习方法。

谷歌提出的算法在鸣禽大脑中追踪单个神经突的 3D 过程。

谷歌研究人员正和马克思·普朗克研究所的同僚们通过这种自动化方法,辅以少量人力协助以解决一些疑难问题。他们现在正致力于研究鸣禽连接组以寻求新理解,如研究斑胸草雀如何唱歌,以及它们如何学会唱歌。

展望

谷歌研究人员表示,他们在未来将继续改进连接组重构技术,目标是实现突触级分辨率连接组的全自动化,并为马克思·普朗克研究所及其他机构的连接组项目作出贡献。为了帮助支持更大的研究团队开发连接组技术,他们开源了泛洪算法网络方法的 TensorFlow 代码(https://github.com/google/ffn/)以及用于 3D 数据集的 WebGL 可视化软件,以帮助人们理解和改进目前的方法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6142

    浏览量

    105099
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100537

原文标题:前 | 谷歌AI脑神经元绘制法登上Nature子刊:速度提升一个数量级

文章出处:【微信号:gh_ecbcc3b6eabf,微信公众号:人工智能和机器人研究院】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    人工神经网络的案例分析

    人工神经网络(Artificial Neural Network, ANN)作为深度学习领域的重要分支,自20世纪80年代以来一直是人工智能领域的研究热点。其灵感来源于生物
    的头像 发表于 07-08 18:20 680次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络循环神经网络是一种具有时间序列特性的
    的头像 发表于 07-05 09:52 491次阅读

    不同的人工神经网络模型各有什么作用?

    人工神经网络(Artificial Neural Networks, ANNs)是一种受生物神经网络启发的计算模型,广泛应用于各种领域。本文将介绍不同类型
    的头像 发表于 07-05 09:19 641次阅读

    递归神经网络循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 637次阅读

    循环神经网络的应用场景有哪些

    自然语言处理(Natural Language Processing,简称NLP)是计算机科学和人工智能领域的一个重要分支,旨在使计算机能够理解、生成和处理人类语言。循环神经网络在自然语言处理领域有着广泛的应用。 1.1 语言
    的头像 发表于 07-04 14:39 1098次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1122次阅读

    人工智能神经网络系统的特点

    人工智能神经网络系统是一种模拟人脑神经网络结构和功能的计算模型,具有高度的自适应性、学习能力和泛化能力。本文将介绍人工智能神经网络系统的特点
    的头像 发表于 07-04 09:42 401次阅读

    人工智能人工神经网络有什么区别

    人工智能是一门研究如何使计算机模拟人类智能行为的学科。它起源于20世纪40年代,当时计算机科学家们开始尝试开发能够模拟人类思维过程的计算机程序。人工智能的目标是通过计算机程序实现对人类智能
    的头像 发表于 07-04 09:39 1054次阅读

    人工智能神经网络的结构是什么

    人工智能神经网络是一种模拟人脑神经网络的计算模型,其结构和功能非常复杂。 引言 人工智能神经网络是一种模拟人脑
    的头像 发表于 07-04 09:37 473次阅读

    人工智能神经网络的工作原理是什么

    人工智能神经网络的工作原理是一个复杂且深入的话题,涉及到多个领域的知识,包括数学、计算机科学、生物学等。 神经网络的基本概念 神经网络是一种
    的头像 发表于 07-04 09:35 561次阅读

    人工智能神经网络芯片的介绍

    人工智能神经网络芯片是一类专门为深度学习和神经网络算法设计的处理器。它们具有高性能、低功耗、可扩展等特点,广泛应用于图像识别、语音识别、自然语言处理等领域。以下是关于人工智能
    的头像 发表于 07-04 09:33 585次阅读

    神经网络人工智能的关系是什么

    神经网络人工智能的关系是密不可分的。神经网络人工智能的一种重要实现方式,而人工智能则是神经网络
    的头像 发表于 07-03 10:25 954次阅读

    神经网络人工智能的关系

    在快速发展的科技领域,人工智能(Artificial Intelligence, AI)和神经网络(Neural Networks)是两个备受瞩目的概念。它们之间的联系紧密而复杂,共同推动了智能
    的头像 发表于 07-01 14:23 693次阅读

    神经网络架构有哪些

    神经网络架构是机器学习领域中的核心组成部分,它们模仿生物神经网络的运作方式,通过复杂的网络结构实现信息的处理、存储和传递。随着深度学习
    的头像 发表于 07-01 14:16 615次阅读

    详解深度学习、神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线,通过深度学习解决若干问题的案例越来越多。一
    的头像 发表于 01-11 10:51 1912次阅读
    详解深度学习、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用