0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶的不断发展,也加大了我们对未来的担忧和伦理探讨

ml8z_IV_Technol 来源:未知 作者:李倩 2018-07-23 15:53 次阅读

自动驾驶的不断发展,也加大了我们对未来的担忧和伦理探讨。毕竟在高速行驶的汽车上,一旦面对最糟糕的结果选择,人类并不信任机器能做出合适的判断。

7月初,李彦宏在百度AI开发者大会上实现了“吹过的牛B”,L4级自动驾驶商用车阿波龙的商业化量产,成为自动驾驶领域最新的重磅新闻。

同时发布的还有AI芯片“昆仑”,李彦宏也对“昆仑”不惜溢美之词,声称其能在100W的功耗上实现260Tops性能。可以预见,无论被视为一套系统的自动驾驶技术,还是其中作为“驾驶员”这个关键决策角色的AI技术,将以超出公众想象的速度快速迭代进化。

但也引起更多对未来的担忧和伦理探讨。毕竟在高速行驶的汽车上,一旦面对最糟糕的结果选择,人类并不信任机器能做出合适的判断。

推理至上与快速迭代

众所周知,L4级被视为自动驾驶的一个关键节点,AI全面接管驾驶工作,人类对驾驶行为的干预不再是必须而实时的。

昆仑芯片在自动驾驶场景中,最重要的工作就是根据传感器数据,满足训练和推断的需求,根据路况不断预测未来0.1-10秒的路面局势变化,这是高等级自动驾驶独特的能力。

换言之,只有经过训练的强AI才能独立处理未知局势。

例如谷歌的AlphaGo,在CPU之外采用了用于评估局面的4TPU。实际上是卷积神经网络的应用。它的分支有两个:价值和策略。不必每一步都穷举到最后,它就能推断每一步的价值和对最终获胜的影响。

按照谷歌首席工程师的说法,在任何一步,AlphaGo都会准确预测如何能赢。

这不是在跳大神,而是自我监督下的AI展现出强大的推理和预测能力。如果采用云端算法,很可能实现强AI。

现在的AlphaGo,已经没有任何一个活着的人类可以匹敌了。它拥有40层神经网络和“足够视野的前瞻性”,能够看到未来的危险和价值,并采取最优策略。

尽管因为应用场景只局限于园区等固定区域,阿波龙的L4级自动驾驶仍有争议,但在开放道路上的L4级自动驾驶,强化AI是其中最可能的途径。它可以避免优步在今年早些时候、在凤凰城路测发生的悲剧。

此前,在量产车上搭载的行车电脑ECU可以做之前人类才能做的事。在它的指挥下,自动变速箱轻松换挡。在高速行驶中遇到变道行驶或侧风、路面倾斜等外部干扰时,驾驶人可以自如操纵方向。低速转弯时前后轮转动方向相反,可以轻松通过以前需要多次转弯才能通过的小弯。

如何满足不知满足的人类呢?AI需要超越现有人类认知水平和能力,如同围棋比赛中那样,被惊倒的人们自然将王冠奉上,并日益依赖更聪明的AI。

通用AI的再进化

如果计算机有情感,它会发现人类的推理能力实在是弱爆了。逻辑的层级和旁路拓展多到一定地步,人类就无法记住众多的信息和它们彼此的关联,更别提放在一起分析了。

但人类也有AI无法企及的地方,人类的直觉值得肃然起敬,并善于将复杂问题简化,然后用直观判断的方式直趋答案。隐藏的信息是否足以支持做出精准的判断?虽然不总是正确,但这样耗费的时间和精力都是可接受的。我们放弃了一些表象,捕捉隐含信息(学术上称为“次表征”),从而追求更快地解决问题。

人们期待计算机的“思考”方式能够模拟大脑结构。但是,无论谷歌的TPU,还是百度的昆仑,都只能针对限定输入给出结论。

如果围棋的棋盘变成20×19,人类棋手稳赢,而AlphaGo则可能不知所措。如果道路标线模糊不清,AI可能选择让汽车停下来,而人类驾驶员则可以大致“循迹”行驶,基本不受影响。

那么如何让计算机看起来不那么蠢呢?

这样的AI必然立足于“机器学习”。本地算法无法涵盖所有路况,设计者必须赋予无人驾驶系统一定的自主权,避免在特殊路况下该系统不知所措。和人类一样,计算机仍然要先搜集大量数据样本,也就是各种路况下的驾驶行为,就像人类也需要反复练习驾驶技能,锻炼预见性和形成固定的肌肉记忆。

机器学习,实际上是将人类学习过程“外化”。选择合适的模型,让模型学习样本,从而找出数据的内在规律,从而形成对未知路况的“经验”。

面对复杂外界条件,AI仍然需要基本的预设应对策略。在人类无法厘清复杂的因果关系时,不需要也无法为AI设立先决条件和成熟策略。事实证明,机器学习,更善于从海量数据中抽象出若干有价值的因素,同时确定因素之间的相关性。从而确立应对策略。

比如,在城市快速路上行驶的驾驶员,主观上对突然出现的行人缺乏预期,因为法律上禁止行人穿行。AI也同样很难从样本中学到,如何在封闭道路上应对突然出现的障碍。

这也就是“逾规则”状态下的应对能力。理论上,自动驾驶系统的传感器(比如激光雷达)可以比人类驾驶员更早地发现违规行人,即环境感知。

假设行人采取不明智的做法,如加速奔跑、快速从车前穿行等。人类驾驶员如果发现刹车距离不够,将面临两难,如果直接将刹车踩到底,有很大概率发生碰撞;如果一边变线一边刹车,很可能与同向车辆发生碰撞,引发更严重的事故。而观察相邻车道的情况则导致更多的时间延迟,这种情况下,人类很难做出最佳选择。

AI系统则会对行人行为模式建立模型,根据其肢体动作,预估其下一步的位置,同时收集相邻车道和交通标志线信息。在20ms内计算出,多少转向力度和刹车力,才能保证自身安全和避免碰撞,即决策协同。

最后的动作,则驱动车辆完全实现此前的计算,即控制执行。

其中的核心在于预估对方的行为。只有“强AI”才有可能做到这一点。赋权不够或者学习能力不足的本地计算机,将无法胜任。这也是未来的无人驾驶系统必然是“强AI”的原因,虽然这个概念备受争议。

未知导致恐惧

但由此带来的问题是,在汽车自动驾驶这个关于人类生命安全的应用场景中,如果交通网络完全由无人驾驶车辆组成,AI本身将形成另一套交通规则,无须而且排斥人类的参与。

这样的强AI应用场景一旦实现,人类将陷入更深的担忧。因为其强大的学习能力,自我进化速度极快,很可能产生自我意识,不愿意被人类束缚。而人类对其思维和执行缺乏预见,一旦失控,相比于人类驾驶的场景,后果更加是灾难性的。

无知导致恐惧,即便可以执行完全无害的任务,也会因为不可预知性而让人类害怕。因为强AI的决策过程,基本上是个“黑盒子”。

马斯克和今年去世的霍金都曾发出严厉警告,强AI实现之日,被称为“奇点”,可能会导致凯文·凯利所称的“失控”。这也是被视为科学前瞻的科幻小说中,几乎永远对人工智能表达出忧患意识甚至末日情绪的根本来源。

但在现实中,面对AI可能的自我意识觉醒,拉里·佩奇表示并不担心,他认为AI的善恶取决于创造者,眼下的科技公司们仍然普遍致力于增强型AI的研究。

毫无疑问,自动驾驶的终极解决方案是强AI,但有远见的学者都对此表示强烈的担忧。这是否意味着我们应该在此之前“踩刹车”或者另辟蹊径?一条风景极佳的道路尽头是否深渊?

最糟糕的预期,很可能来自我们恐惧的源头——人类从未面对过比自己更聪明的实体。

从上帝视角来看,我们是否正不遗余力地奔向悬崖?强AI能解决自动驾驶场景的诱惑,让我们无暇顾忌可怕的后果。实在不行,拔掉电源插头总可以吧?

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8425

    浏览量

    132771
  • 自动驾驶
    +关注

    关注

    784

    文章

    13867

    浏览量

    166603
  • AI芯片
    +关注

    关注

    17

    文章

    1893

    浏览量

    35099

原文标题:自动驾驶会导致AI“奇点”后的失控吗?

文章出处:【微信号:IV_Technology,微信公众号:智车科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NVIDIA DRIVE技术推动自动驾驶发展

    随着 AI 技术的飞速发展,汽车行业正经历一场深刻而全面的智能化转型。以 NVIDIA DRIVE 技术为核心,NVIDIA 正在推动着自动驾驶技术不断迈向新高度。2025 年,AI 将在汽车行业中
    的头像 发表于 12-29 16:02 338次阅读

    重塑线控底盘技术:自动驾驶未来支柱

    线控底盘(X-by-wire)技术,作为自动驾驶技术的核心支撑,正悄然改变着汽车工业的技术架构与市场生态。本文深入剖析线控底盘的定义、在自动驾驶中的核心作用、当前技术状态及其面临的挑战,并结合市场趋势与政策导向,展望
    的头像 发表于 11-01 12:28 1131次阅读

    线控底盘,自动驾驶时代的基石?

    线控底盘(X-by-wire)作为自动驾驶技术的核心支撑技术,正逐步改变着汽车工业的技术框架和市场格局。本文深入探讨了线控底盘的定义及其在自动驾驶中的关键作用,分析了当前技术的现状及其面临的挑战,并
    的头像 发表于 10-31 13:06 385次阅读
    线控底盘,<b class='flag-5'>自动驾驶</b>时代的基石?

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶汽车的安全问题变得非常重要,这样你才能回答“
    的头像 发表于 10-29 13:42 548次阅读
    <b class='flag-5'>自动驾驶</b>汽车安全吗?

    浅谈自动驾驶技术的现状及发展趋势

    自动驾驶技术,作为人工智能和计算机科学领域的一项重要应用,近年来取得了显著的发展与进步。它不仅代表着汽车产业的未来方向,更预示着人类出行方式的深刻变革。 一、自动驾驶技术的现状
    的头像 发表于 10-22 14:33 1225次阅读

    自动驾驶技术进展及其对未来出行的影响

    驾驶,对于一些人而言是乐趣的源泉,但对于另一些人来说,却是一项令人疲惫的任务。随着自动驾驶技术的飞速发展,这一现状正在发生深刻的变化。自动驾驶技术不仅能够极大地减轻
    的头像 发表于 10-10 16:25 1002次阅读

    自动驾驶未来之路:智能网联与单车智能的交融

    随着全球科技的飞速进步,自动驾驶技术已从实验室概念逐渐走向商业化实践,引领着未来交通出行的革命。然而,关于自动驾驶技术的具体发展路径,业内始终存在两种主要观点:单车智能与智能网联。本文
    的头像 发表于 08-30 14:35 1535次阅读

    FPGA在自动驾驶领域有哪些优势?

    。 长期可维护性: 随着自动驾驶技术的不断发展和更新,系统需要经常进行维护和升级。FPGA的可编程性和可配置性使得系统维护和升级变得更加容易和灵活。用户可以通过重新编程FPGA来更新算法或优化性能,而无
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    控制。在视觉算法方面,FPGA利用自身并行处理和高速存储器的特点,极大地加快了算法的执行速度,提高了运算效率。 五、未来发展趋势随着自动驾驶技术的不断发展,FPGA在
    发表于 07-29 17:09

    中级自动驾驶架构师应该学习哪些知识

    是一个新兴且不断发展的职业。随着技术的进步,这一领域将继续吸引更多人才,推动自动驾驶技术的发展自动驾驶架构师在设计和开发自动驾驶系统时将
    的头像 发表于 06-20 21:47 303次阅读

    初级自动驾驶架构师应该学习哪些知识

    是一个新兴且不断发展的职业。随着技术的进步,这一领域将继续吸引更多人才,推动自动驾驶技术的发展自动驾驶架构师在设计和开发自动驾驶系统时将
    的头像 发表于 06-20 21:45 327次阅读

    未来已来,多传感器融合感知是自动驾驶破局的关键

    的Robotaxi运营。这标志着L4级自动驾驶迎来了新的里程碑,朝着商业化落地迈进了一大步。中国的车企不甘落后:4月7日,广汽埃安与滴滴自动驾驶宣布合资公司——广州安滴科技有限公司获批工商执照。广汽埃安
    发表于 04-11 10:26

    自动驾驶发展问题及解决方案浅析

    随着科技的飞速进步,自动驾驶汽车已经从科幻概念逐渐转变为现实。然而,在其蓬勃发展的背后,自动驾驶汽车仍面临一系列亟待解决的问题和挑战。本文将对这些问题进行深入的剖析,并提出相应的解决方案,以期为
    的头像 发表于 03-14 08:38 1185次阅读

    嵌入式系统发展前景?

    应用领域。随着汽车电子化和智能化程度的不断提高,嵌入式系统将在汽车控制、安全系统、自动驾驶等方面发挥更为重要的作用。 工智能和机器学习技术的发展为嵌入式系统提供新的
    发表于 02-22 14:09

    康谋新闻丨走进康谋科技——您的自动驾驶解决方案合作伙伴

    面对日益增长的行业需求,虹科自动驾驶事业部正式更名为“康谋”。这一重要改变代表虹科持续发展进程中新的里程碑,体现
    的头像 发表于 01-19 14:49 413次阅读
    康谋新闻丨走进康谋科技——您的<b class='flag-5'>自动驾驶</b>解决方案合作伙伴