0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

DeepFM并行结构中的一种典型代表

lviY_AI_shequ 来源:未知 作者:李倩 2018-07-25 17:55 次阅读

1、背景

特征组合的挑战

对于一个基于CTR预估的推荐系统,最重要的是学习到用户点击行为背后隐含的特征组合。在不同的推荐场景中,低阶组合特征或者高阶组合特征可能都会对最终的CTR产生影响。

之前介绍的因子分解机(Factorization Machines, FM)通过对于每一维特征的隐变量内积来提取特征组合。最终的结果也非常好。但是,虽然理论上来讲FM可以对高阶特征组合进行建模,但实际上因为计算复杂度的原因一般都只用到了二阶特征组合。

那么对于高阶的特征组合来说,我们很自然的想法,通过多层的神经网络即DNN去解决。

DNN的局限

下面的图片来自于张俊林教授在AI大会上所使用的PPT。

我们之前也介绍过了,对于离散特征的处理,我们使用的是将特征转换成为one-hot的形式,但是将One-hot类型的特征输入到DNN中,会导致网络参数太多:

如何解决这个问题呢,类似于FFM中的思想,将特征分为不同的field:

再加两层的全链接层,让Dense Vector进行组合,那么高阶特征的组合就出来了

但是低阶和高阶特征组合隐含地体现在隐藏层中,如果我们希望把低阶特征组合单独建模,然后融合高阶特征组合。

即将DNN与FM进行一个合理的融合:

二者的融合总的来说有两种形式,一是串行结构,二是并行结构

而我们今天要讲到的DeepFM,就是并行结构中的一种典型代表。

2、DeepFM模型

我们先来看一下DeepFM的模型结构:

DeepFM包含两部分:神经网络部分与因子分解机部分,分别负责低阶特征的提取和高阶特征的提取。这两部分共享同样的输入。DeepFM的预测结果可以写为:

FM部分

FM部分的详细结构如下:

FM部分是一个因子分解机。关于因子分解机可以参阅文章[Rendle, 2010] Steffen Rendle. Factorization machines. In ICDM, 2010.。因为引入了隐变量的原因,对于几乎不出现或者很少出现的隐变量,FM也可以很好的学习。

FM的输出公式为:

深度部分

深度部分是一个前馈神经网络。与图像或者语音这类输入不同,图像语音的输入一般是连续而且密集的,然而用于CTR的输入一般是及其稀疏的。因此需要重新设计网络结构。具体实现中为,在第一层隐含层之前,引入一个嵌入层来完成将输入向量压缩到低维稠密向量。

嵌入层(embedding layer)的结构如上图所示。当前网络结构有两个有趣的特性,1)尽管不同field的输入长度不同,但是embedding之后向量的长度均为K。2)在FM里得到的隐变量Vik现在作为了嵌入层网络的权重。

这里的第二点如何理解呢,假设我们的k=5,首先,对于输入的一条记录,同一个field 只有一个位置是1,那么在由输入得到dense vector的过程中,输入层只有一个神经元起作用,得到的dense vector其实就是输入层到embedding层该神经元相连的五条线的权重,即vi1,vi2,vi3,vi4,vi5。这五个值组合起来就是我们在FM中所提到的Vi。在FM部分和DNN部分,这一块是共享权重的,对同一个特征来说,得到的Vi是相同的。

有关模型具体如何操作,我们可以通过代码来进一步加深认识。

3、相关知识

我们先来讲两个代码中会用到的相关知识吧,代码是参考的github上星数最多的DeepFM实现代码。

Gini Normalization

代码中将CTR预估问题设定为一个二分类问题,绘制了Gini Normalization来评价不同模型的效果。这个是什么东西,不太懂,百度了很多,发现了一个比较通俗易懂的介绍。

假设我们有下面两组结果,分别表示预测值和实际值:

predictions = [0.9, 0.3, 0.8, 0.75, 0.65, 0.6, 0.78, 0.7, 0.05, 0.4, 0.4, 0.05, 0.5, 0.1, 0.1]actual = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

然后我们将预测值按照从小到大排列,并根据索引序对实际值进行排序:

Sorted Actual Values [0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1]

然后,我们可以画出如下的图片:

接下来我们将数据Normalization到0,1之间。并画出45度线。

橙色区域的面积,就是我们得到的Normalization的Gini系数。

这里,由于我们是将预测概率从小到大排的,所以我们希望实际值中的0尽可能出现在前面,因此Normalization的Gini系数越大,分类效果越好。

embedding_lookup

tensorflow中有个embedding_lookup函数,我们可以直接根据一个序号来得到一个词或者一个特征的embedding值,那么他内部其实是包含一个网络结构的,如下图所示:

假设我们想要找到2的embedding值,这个值其实是输入层第二个神经元与embedding层连线的权重值。

之前有大佬跟我探讨word2vec输入的问题,现在也算是有个比较明确的答案,输入其实就是one-hot Embedding,而word2vec要学习的是new Embedding。

4、代码解析

好,一贯的风格,先来介绍几个地址:原代码地址:https://github.com/ChenglongChen/tensorflow-DeepFM本文代码地址:https://github.com/princewen/tensorflow_practice/tree/master/Basic-DeepFM-model数据下载地址:https://www.kaggle.com/c/porto-seguro-safe-driver-prediction

好了,话不多说,我们来看看代码目录吧,接下来,我们将主要对网络的构建进行介绍,而对数据的处理,流程的控制部分,相信大家根据代码就可以看懂。

项目结构

项目结构如下:

其实还应该有一个存放data的路径。config.py保存了我们模型的一些配置。DataReader对数据进行处理,得到模型可以使用的输入。DeepFM是我们构建的模型。main是项目的入口。metrics是计算normalized gini系数的代码。

模型输入

模型的输入主要有下面几个部分:

self.feat_index = tf.placeholder(tf.int32, shape=[None,None], name='feat_index')self.feat_value = tf.placeholder(tf.float32, shape=[None,None], name='feat_value')self.label = tf.placeholder(tf.float32,shape=[None,1],name='label')self.dropout_keep_fm = tf.placeholder(tf.float32,shape=[None],name='dropout_keep_fm')self.dropout_keep_deep = tf.placeholder(tf.float32,shape=[None],name='dropout_deep_deep')

feat_index是特征的一个序号,主要用于通过embedding_lookup选择我们的embedding。feat_value是对应的特征值,如果是离散特征的话,就是1,如果不是离散特征的话,就保留原来的特征值。label是实际值。还定义了两个dropout来防止过拟合。

权重构建

权重的设定主要有两部分,第一部分是从输入到embedding中的权重,其实也就是我们的dense vector。另一部分就是深度神经网络每一层的权重。第二部分很好理解,我们主要来看看第一部分:

#embeddingsweights['feature_embeddings'] = tf.Variable( tf.random_normal([self.feature_size,self.embedding_size],0.0,0.01), name='feature_embeddings')weights['feature_bias'] = tf.Variable(tf.random_normal([self.feature_size,1],0.0,1.0),name='feature_bias')

weights['feature_embeddings'] 存放的每一个值其实就是FM中的vik,所以它是N * F * K的。其中N代表数据量的大小,F代表feture的大小(将离散特征转换成one-hot之后的特征总量),K代表dense vector的大小。

weights['feature_bias']是FM中的一次项的权重。

Embedding part

这个部分很简单啦,是根据feat_index选择对应的weights['feature_embeddings']中的embedding值,然后再与对应的feat_value相乘就可以了:

# modelself.embeddings = tf.nn.embedding_lookup(self.weights['feature_embeddings'],self.feat_index) # N * F * Kfeat_value = tf.reshape(self.feat_value,shape=[-1,self.field_size,1])self.embeddings = tf.multiply(self.embeddings,feat_value)

FM part

首先来回顾一下我们之前对FM的化简公式,之前去今日头条面试还问到过公式的推导。

所以我们的二次项可以根据化简公式轻松的得到,再加上我们的一次项,FM的part就算完了。同时更为方便的是,由于权重共享,我们这里可以直接用Embedding part计算出的embeddings来得到我们的二次项:

# first order termself.y_first_order = tf.nn.embedding_lookup(self.weights['feature_bias'],self.feat_index)self.y_first_order = tf.reduce_sum(tf.multiply(self.y_first_order,feat_value),2)self.y_first_order = tf.nn.dropout(self.y_first_order,self.dropout_keep_fm[0])# second order term# sum-square-partself.summed_features_emb = tf.reduce_sum(self.embeddings,1) # None * kself.summed_features_emb_square = tf.square(self.summed_features_emb) # None * K# squre-sum-partself.squared_features_emb = tf.square(self.embeddings)self.squared_sum_features_emb = tf.reduce_sum(self.squared_features_emb, 1) # None * K#second orderself.y_second_order = 0.5 * tf.subtract(self.summed_features_emb_square,self.squared_sum_features_emb)self.y_second_order = tf.nn.dropout(self.y_second_order,self.dropout_keep_fm[1])

DNN part

DNNpart的话,就是将Embedding part的输出再经过几层全链接层:

# Deep componentself.y_deep = tf.reshape(self.embeddings,shape=[-1,self.field_size * self.embedding_size])self.y_deep = tf.nn.dropout(self.y_deep,self.dropout_keep_deep[0])for i in range(0,len(self.deep_layers)): self.y_deep = tf.add(tf.matmul(self.y_deep,self.weights["layer_%d" %i]), self.weights["bias_%d"%I]) self.y_deep = self.deep_layers_activation(self.y_deep) self.y_deep = tf.nn.dropout(self.y_deep,self.dropout_keep_deep[i+1])

最后,我们要将DNN和FM两部分的输出进行结合:

concat_input = tf.concat([self.y_first_order, self.y_second_order, self.y_deep], axis=1)

损失及优化器

我们可以使用logloss(如果定义为分类问题),或者mse(如果定义为预测问题),以及多种的优化器去进行尝试,这些根据不同的参数设定得到:

# lossif self.loss_type == "logloss": self.out = tf.nn.sigmoid(self.out) self.loss = tf.losses.log_loss(self.label, self.out)elif self.loss_type == "mse": self.loss = tf.nn.l2_loss(tf.subtract(self.label, self.out))# l2 regularization on weightsif self.l2_reg > 0: self.loss += tf.contrib.layers.l2_regularizer( self.l2_reg)(self.weights["concat_projection"]) if self.use_deep: for i in range(len(self.deep_layers)): self.loss += tf.contrib.layers.l2_regularizer( self.l2_reg)(self.weights["layer_%d" % I])if self.optimizer_type == "adam": self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(self.loss)elif self.optimizer_type == "adagrad": self.optimizer = tf.train.AdagradOptimizer(learning_rate=self.learning_rate, initial_accumulator_value=1e-8).minimize(self.loss)elif self.optimizer_type == "gd": self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=self.learning_rate).minimize(self.loss)elif self.optimizer_type == "momentum": self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate, momentum=0.95).minimize( self.loss)

模型效果

前面提到了,我们用logloss作为损失函数去进行模型的参数更新,但是代码中输出了模型的 Normalization 的 Gini值来进行模型评价,我们可以对比一下(记住,Gini值越大越好呦):

好啦,本文只是提供一个引子,有关DeepFM更多的知识大家可以更多的进行学习呦。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4651

    浏览量

    99487
  • 深度学习
    +关注

    关注

    73

    文章

    5332

    浏览量

    120187

原文标题:推荐系统遇上深度学习(三)--DeepFM模型理论和实践

文章出处:【微信号:AI_shequ,微信公众号:人工智能爱好者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    一种高速并行FFT处理器的VLSI结构设计

    一种高速并行FFT处理器的VLSI结构设计摘要:在OFDM系统的实现,高速FFT处理器是关键。在分析了基4按时域抽取快速傅立叶变换(FFT)算法特别的基础上,研究了
    发表于 10-15 22:41

    一种柔性图像并行处理机

    一种柔性图像并行处理机摘 要:探讨了多指令流多数据流图像并行处理拓扑结构,设计了一种具有柔性结构
    发表于 10-06 08:57

    单片机与PC机之间并行通讯的一种实现方法

    单片机与PC机之间并行通讯的一种实现方法
    发表于 08-17 23:14

    一种宽禁带圆环形PBG结构设计

    计算的瓶颈。此外当PBG结构为圆环形时,般的阶梯近似不足以满足计算精度。针对以上两个问题,本文采用本课题组带有共形网格建模的MPI并行FDTD程序对圆环形PBG
    发表于 06-27 07:01

    一种减少VDMOS寄生电容的新结构

    VDMOS的基本原理一种减小寄生电容的新型VDMOS结构介绍
    发表于 04-07 06:58

    一种采用分段量化和比特滑动技术的流水并行式模数转换电路?

    本文提出了一种采用分段量化和比特滑动技术的流水并行式模数转换电路,较好地结合了并行式和逐次逼近比较式两模数转换各自的长处,在保证高速工作的同时,可实现
    发表于 04-08 06:34

    介绍一种适合大规模数字信号处理的并行处理结构

    本文提出了一种基于FPGA的适合大规模数字信号处理的并行处理结构
    发表于 04-30 07:16

    如何设计制作一种并行网络化实时彩色分析虚拟仪器?

    本论文设计制作了一种并行网络化实时彩色分析虚拟仪器。为了实现高速测试系统互联,本文采用了100M以太网和TCP/IP网络通信协议。
    发表于 05-08 07:43

    为什么要提出一种并行通信方法?并行通信方法有什么特点?

    为什么要提出一种并行通信方法?并行通信方法有什么特点?
    发表于 05-27 06:16

    介绍一种基于FIFO结构的优化端点设计方案

    本文介绍一种基于FIFO结构的优化端点设计方案。
    发表于 05-31 06:31

    求大佬分享一种基于GPU的Voronoi图并行栅格生成算法

    本文重点研究了Voronoi图的栅格生成方法,首先比较了常见的栅格方法生成Voronoi图的优缺点,然后结合CUDA的出现,提出一种基于GPU的Voronoi图并行栅格生成算法。
    发表于 06-01 06:44

    如何去实现一种LCD显示模块并行接口驱动程序的设计?

    如何去实现一种LCLCDD显示模块并行接口驱动程序的设计?
    发表于 06-07 06:24

    在FPGA体系结构能够实现的并行运算

    )、离散余弦变换(DCT)、小波变换、数字滤波器(有限脉冲响应(FIR)、无限脉冲响应(IIR)和自适应滤波器)以及数字上下变频器。这些算法,每一种都有结构性的元件可以用
    发表于 12-15 06:30

    一种新型多DSP并行处理结构

    提出了一种由6片ADSP-21161构成的新型的多DSP并行处理结构,它具有运算能力强、I/O带宽宽、通信手段多样、能灵活地改变拓扑结构、可扩展性和通用性强等特点,并且以此
    发表于 11-26 15:18 6次下载

    并行除法器 ,并行除法器结构原理是什么?

    并行除法器 ,并行除法器结构原理是什么?   1.可控加法/减法(CAS)单元    和阵列乘法器非常相似,阵列式除法器也是一种并行运算
    发表于 04-13 10:46 1.5w次阅读