0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

斯坦福证明光学芯片上训练人工神经网络,之后可以快捷的完成复杂任务

mK5P_AItists 来源:未知 作者:工程师郭婷 2018-07-30 17:01 次阅读

据报道,美国斯坦福大学的研究人员已经证明,可以直接在光学芯片上训练人工神经网络。这一重大突破表明,光学电路可以实现基于电子的人工神经网络的关键功能,进而可以以更便宜、更快速和更节能的方式执行语音识别、图像识别等复杂任务。

“相比使用数字计算机,使用光学芯片进行神经网络计算更有效,能够解决更复杂的问题,”斯坦福大学研究团队的负责人范汕洄(Shanhui Fan)说:“这将增强人工神经网络的能力,例如,使其能够执行自动驾驶汽车所要求的任务,或者能够对口头问题做出适当的回答。这将以我们现在无法想象的方式改善我们的生活。”

人工神经网络是人工智能的一种,它使用连接的单元,以类似大脑处理信息的方式来处理信息。使用人工神经网络执行复杂的任务,例如语音识别,需要训练算法对输入进行分类,比如对不同的单词进行分类。

虽然光学人工神经网络最近已经得到实验证明,但此前的研究是在传统的数字计算机上使用一个模型进行训练步骤,然后将最终的设置导入光学电路。在最新Optica期刊上,斯坦福大学的研究人员报告了一种新方法,通过实现“反向传播”算法(这是训练传统神经网络的标准方法)的光学模拟,直接在设备中训练人工神经网络。

图:研究人员已经证明,神经网络可以通过光学电路(图中蓝色矩形)进行训练。在整个网络中,有若干个这样的电路连接在一起。激光输入(绿色)的编码信息由光波导(黑色)通过芯片。芯片使用可调波束分离器(光波导中弯曲的部分)执行对人工神经网络至关重要的操作。分离器将两个相邻的波导连接在一起,并可通过调整光学移相器(红色和蓝色发光物体)的设置进行调整。分离器的作用就像“旋钮”,可以在特定任务的训练过程中进行调整。Credit: Tyler W. Hughes, Stanford University

该论文的第一作者说:“使用物理设备而不是计算机模型进行训练,可以使训练过程更精确。”“而且,由于训练步骤是神经网络实现中非常耗费计算力的部分,因此,在光学电路上执行这个步骤,对于改进人工神经网络的计算效率、速度和功耗都是至关重要的。”

基于光的网络

虽然神经网络处理通常使用传统的计算机进行,但仍有大量的工作要专门设计针对神经网络计算优化的硬件。基于光学的设备非常吸引人,因为它们可以并行地执行计算,同时比电子设备消耗的能量更少。

在这项新研究中,研究人员通过设计一种光学芯片来复制传统计算机训练神经网络的方式,克服了实现全光学神经网络(all-optical neural network)的一个重大挑战。

人工神经网络可以被视为一个带有许多旋钮的黑盒。在训练期间,每个旋钮都要转动一点,然后测试系统,查看算法的性能是否得到改善。

“我们的方法不仅可以帮助预测旋钮转动的方向,还可以预测每个旋钮转动的方向,从而更接近预期的性能。”Hughes说,“我们的方法大大加快了训练速度,特别是对于大型网络,因为可以并行地获得每个旋钮的信息。”

片上训练

新的训练协议在具有可调谐光束分离器的光学电路运行,通过改变光学移相器的设置进行调整。具体来说,该方法是将编码有待处理信息的激光束发射到光学电路中,由光波导通过光束分离器进行传输,像旋钮一样进行调整,以训练神经网络算法。

在新的训练协议中,激光首先通过光学电路输入。退出设备后,计算出与预期结果的差值。然后,这些信息被用来产生一个新的光信号,这个信号通过光网络以相反的方向发送回来。

通过测量此过程中每个分束器周围的光强度,研究人员展示了如何并行地检测神经网络的性能随着每个分束器设置而变化的情况。移相器的设置可以根据这些信息进行更改,这个过程可以重复,直到神经网络产生期望的结果。

研究人员用光学模拟测试了他们的训练技术,方法是教算法执行复杂的任务,比如在一组点中找出复杂的特征。他们发现光学实现与传统计算机的执行类似。

该研究的负责人说:“我们的研究表明,你可以利用物理定律来实现计算机科学算法。”“通过在光学领域对这些网络进行训练,证明光学神经网络系统可以利用光学器件来实现某些功能。”

研究人员计划进一步优化这个系统,并希望用它来实现神经网络任务的实际应用。他们设计的通用方法可用于各种神经网络架构,也可以用于其他应用。

未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100739
  • 图像识别
    +关注

    关注

    9

    文章

    520

    浏览量

    38268
  • AI
    AI
    +关注

    关注

    87

    文章

    30805

    浏览量

    268942
  • 语音识别
    +关注

    关注

    38

    文章

    1739

    浏览量

    112643

原文标题:斯坦福证明神经网络能直接在光学芯片上训练

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    关于卷积神经网络,这些概念你厘清了么~

    随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本文基于此解释了 卷积神经网络 (CNN)及其对人工智能和机器学习的意义。CNN是一种能够从
    发表于 10-24 13:56

    Python自动训练人工神经网络

    人工神经网络(ANN)是机器学习中一种重要的模型,它模仿了人脑神经元的工作方式,通过多层节点(神经元)之间的连接和权重调整来学习和解决问题。Python由于其强大的库支持(如Tenso
    的头像 发表于 07-19 11:54 350次阅读

    脉冲神经网络怎么训练

    脉冲神经网络(SNN, Spiking Neural Network)的训练是一个复杂但充满挑战的过程,它模拟了生物神经元通过脉冲(或称为尖峰)进行信息传递的方式。以下是对脉冲
    的头像 发表于 07-12 10:13 586次阅读

    20个数据可以训练神经网络

    是一种强大的机器学习模型,可以处理各种复杂任务,如图像识别、自然语言处理和游戏。然而,训练一个神经网络通常需要大量的数据。在某些情况下,我
    的头像 发表于 07-11 10:29 870次阅读

    怎么对神经网络重新训练

    重新训练神经网络是一个复杂的过程,涉及到多个步骤和考虑因素。 引言 神经网络是一种强大的机器学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。然而,随着时间的推移,数据分布可
    的头像 发表于 07-11 10:25 452次阅读

    BP神经网络人工神经网络的区别

    BP神经网络人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及
    的头像 发表于 07-10 15:20 1032次阅读

    BP神经网络的基本结构和训练过程

    网络结构,通过误差反向传播算法(Error Backpropagation Algorithm)来训练网络,实现对复杂问题的学习和解决。以下将详细阐述BP
    的头像 发表于 07-10 15:07 4306次阅读
    BP<b class='flag-5'>神经网络</b>的基本结构和<b class='flag-5'>训练</b>过程

    如何利用Matlab进行神经网络训练

    ,使得神经网络的创建、训练和仿真变得更加便捷。本文将详细介绍如何利用Matlab进行神经网络训练,包括网络创建、数据预处理、
    的头像 发表于 07-08 18:26 1866次阅读

    人工神经网络模型训练的基本原理

    图像识别、语音识别、自然语言处理等。本文将介绍人工神经网络模型训练的基本原理。 1. 神经网络的基本概念 1.1 神经
    的头像 发表于 07-05 09:16 658次阅读

    人工智能神经网络的结构是什么

    人工智能神经网络是一种模拟人脑神经网络的计算模型,其结构和功能非常复杂。 引言 人工智能神经网络
    的头像 发表于 07-04 09:37 568次阅读

    人工智能神经网络芯片的介绍

    人工智能神经网络芯片是一类专门为深度学习和神经网络算法设计的处理器。它们具有高性能、低功耗、可扩展等特点,广泛应用于图像识别、语音识别、自然语言处理等领域。以下是关于
    的头像 发表于 07-04 09:33 751次阅读

    神经网络芯片和普通芯片区别

    神经网络芯片和普通芯片的区别是一个复杂而深入的话题,涉及到计算机科学、电子工程、人工智能等多个领域。 定义
    的头像 发表于 07-04 09:30 1142次阅读

    卷积神经网络训练的是什么

    训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积神经网络是一种前馈深度学习模型,其核心思想是利用卷积操作提取输入数据的局部特征,并通过多层结构进
    的头像 发表于 07-03 09:15 403次阅读

    人工神经网络的含义和用途是

    人工神经网络(Artificial Neural Networks,简称ANNs)是一种受生物神经网络启发而构建的数学模型,它通过模拟人脑神经元的连接和信息传递方式来实现对
    的头像 发表于 07-02 10:07 830次阅读

    如何训练和优化神经网络

    神经网络人工智能领域的重要分支,广泛应用于图像识别、自然语言处理、语音识别等多个领域。然而,要使神经网络在实际应用中取得良好效果,必须进行有效的训练和优化。本文将从
    的头像 发表于 07-01 14:14 456次阅读