- Load:0 second
- Duration:0 second
- Size:0x0
- Volume:0%
- Fps:60fps
- Sudio decoded:0 Byte
- Video decoded:0 Byte
SEPIC 拥有诸多特性,从而使其比非隔离式反向结构更具吸引力。控制 MOSFET 和输出整流器振铃可减少电磁干扰 (EMI) 和电压应力。在许多情况下,这使您能够使用更低电压的部件,从而降低成本并提高效率。另外,多输出 SEPIC 可改善输出之间的交叉稳压,从而消除对于线性稳压器的需求。
图 1 显示的是一个 SEPIC 转换器,像反向转换器一样它具有最少的部件数量。实际上,如果去除 C1,该电路就是一个反向转换器。该电容可提供对其所连接半导体的电压钳位控制。当 MOSFET 开启时,该电容通过 MOSFET 对 D1 的反向电压进行钳位控制。当电源开关关闭时,在 D1 导电以前漏电压一直上升。在关闭期间,C1 通过 D1 和 C2 对 MOSFET 漏电压进行钳位控制。具有多个输出端的 SEPIC 转换器对绕组比构成限制。其中的一个次级绕组对初级绕组的匝比需为 1:1,同时 C1 必须与之相连接。在图 1 所示的示例电路中,12-V 绕组的匝比为 1:1,但它可能已经使用了 5-V 绕组作为替代。
图1 多输出 SEPIC 转换器
图 1 所示电路已经构建完成,并经过测试。分别将其作为带 C1 的 SEPIC 和没有 C1 的反向转换器运行。图 2 显示了两种运行模式下的 MOSFET 电压应力。在反向模式下,MOSFET 漏极约为 40V,而在 SEPIC 模式下漏电压仅为 25V。因此,反向设计不得不使用一个 40-V 或 60-V MOSFET,而 SEPIC 设计只需使用一个额定值仅为 30V 的 MOSFET。另外,就 EMI 滤波而言,高频率(5 MHz 以上)振铃将是一个严重的问题。
完成对两种电路的交叉稳压测量后,您会发现 SEPIC 大体上更佳。两种设计中,5 V 额定电压实际值为 5.05 V,负载在 0 到满负载之间变化,同时输入电压被设定为 12V 或 24V。SEPIC 的 12V 电压维持在 10% 稳压频带内,而反向转换器的 12V 电压则上升至 30V(高线压输入,12V 无负载,5V 全负载)。如果根据低电压应力选择功率部件,那么即使这两种结构的效率相同人们也会更倾向于使用 SEPIC。
图2 SEPIC 极大地降低了 EMI 和电压应力。上图没有 C1,而下图则安装了 C1。
总之,对非隔离式电源而言,SEPIC 是一种重要的拓扑结构。它将 MOSFET 电压应力钳位控制在一个等于输入电压加输出电压的值,并消除了反向转换器中的 EMI。减少的电压应力允许使用更低电压的部件,从而带来更高效率和更低成本的电源。EMI 的降低可以简化最终产品的合规测试。最后,如果配置为多输出电源,则其交叉稳压将优于反向转换器。
-
半导体
+关注
关注
335文章
27853浏览量
224019 -
emi
+关注
关注
53文章
3608浏览量
128382 -
SEPIC转换器
+关注
关注
0文章
13浏览量
6789
发布评论请先 登录
相关推荐
用于服务器电池备用充电的高压800W SEPIC转换器参考设计
![用于服务<b class='flag-5'>器</b>电池备用充电的高压800W <b class='flag-5'>SEPIC</b><b class='flag-5'>转换器</b>参考设计](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
负载电容对电源转换器启动过程的影响
![负载电容对电源<b class='flag-5'>转换器</b>启动过程的影响](https://file1.elecfans.com/web2/M00/0B/43/wKgaomcfAMiAS8yyAAAQW5qtTfg538.png)
A/D转换器的性能参数
光电型波长转换器和全光型波长转换器的区别
什么是波长转换器?它有哪些特点?
PMP22339.1-适用于服务器电池备用充电的高电压800W SEPIC转换器PCB layout 设计
![PMP22339.1-适用于服务<b class='flag-5'>器</b>电池备用充电的高电压800W <b class='flag-5'>SEPIC</b><b class='flag-5'>转换器</b>PCB layout 设计](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
PMP21883.1-用于太阳能电池板应用的四路输出、SEPIC转换器辅助电源PCB layout 设计
![PMP21883.1-用于太阳能电池板应用的四路输出、<b class='flag-5'>SEPIC</b><b class='flag-5'>转换器</b>辅助电源PCB layout 设计](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
集成式、5A、宽输入范围升压、SEPIC或反激式直流/直流转换器TPS55340-Q1数据表
![集成式、5A、宽输入范围升压、<b class='flag-5'>SEPIC</b>或反激式直流/直流<b class='flag-5'>转换器</b>TPS55340-Q1数据表](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
![](https://file1.elecfans.com/web2/M00/C6/CB/wKgZomYMr-uAABD_AAiwLjdaD3U066.png)
模数转换器的性能指标
适用于升压、SEPIC 和反激式直流/直流转换器的高效控制器LM3481数据表
![适用于升压、<b class='flag-5'>SEPIC</b> 和反激式直流/直流<b class='flag-5'>转换器</b>的高效控制<b class='flag-5'>器</b>LM3481数据表](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
适用于升压、SEPIC 和反激式直流/直流转换器的高效控制器LM3481-Q1数据表
![适用于升压、<b class='flag-5'>SEPIC</b> 和反激式直流/直流<b class='flag-5'>转换器</b>的高效控制<b class='flag-5'>器</b>LM3481-Q1数据表](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
采用双随机展频技术的LM5157 2.2MHz 宽VIN 50V升压/SEPIC/反激式转换器数据表
![采用双随机展频技术的LM5157 2.2MHz 宽VIN 50V升压/<b class='flag-5'>SEPIC</b>/反激式<b class='flag-5'>转换器</b>数据表](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
LLC转换器结构介绍
![LLC<b class='flag-5'>转换器</b>结构<b class='flag-5'>介绍</b>](https://file1.elecfans.com//web2/M00/C1/B5/wKgaomXYaQCAYRveAAC2kxachMo013.png)
评论