0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习与深层神经网络,多层智能学习推动人工智能!

人工智能实训营 2018-08-03 09:44 次阅读

机器学习使计算机能够处理迄今为止仅由人执行的任务。从驾驶汽车到翻译语言,机器学习正在推动人工智能爆炸式的增长,帮助软件理解混乱而不可预知的真实世界。

但究竟什么是机器学习,又是什么让机器学习现在如此繁荣呢?

什么是机器学习?

在很高的水平上,机器学习是教授计算机系统如何在馈入数据时做出准确预测的过程。

这些预测可以回答一张照片中的水果是香蕉还是苹果,发现在自动驾驶汽车前横过马路的人,电子邮件是否是垃圾邮件,或足够准确的识别语音以生成YouTube视频的标题。

与传统计算机软件的主要区别在于,人类开发人员没有编写代码来指导系统如何区分香蕉和苹果之间的区别。相反,机器学习模式通过对大量数据进行训练来准确地区分果实,在这种情况下会有大量标记为香蕉或苹果的图像。

AI和机器学习有什么不同?

机器学习可能已取得了巨大成功 ,但那只是实现人工智能的方式之一。在20世纪50年代人工智能领域诞生之时,人工智能被定义为任何能够执行具有人类智慧任务的机器。

人工智能系统通常至少会展示以下特征中的一部分:规划,学习,推理,解决问题,知识表达,感知,动作和操纵,以及社交智能和创造力。

除了机器学习外,还有其他各种用于构建AI系统的方法,包括进化计算,其中算法经历随机变异和代之间的组合以试图“演变”为最优解决方案。以及专家系统,其中计算机按规则进行编程允许它们模仿特定领域的专家,例如驾驶飞机的自动驾驶系统。

机器学习有哪些主要类型?

机器学习分为两大类:有监督学习和无监督学习。

什么是监督学习?这种方法基本上都是通过例子来学习。

在监督学习训练期间,系统暴露于大量被标记的数据,例如标明了对应数字的手写数字图像。给出足够的例子,监督学习系统将学会识别与每个数字相关的像素和形状,并且最终能够识别手写数字,能够可靠地区分数字9和4或6和8。

但是,对这些系统进行训练通常需要大量标记数据,有些系统甚至需要暴露于数百万个示例才能掌握任务。

因此,用于培训这些系统的数据集可能非常庞大,Google的开放图像数据集包含大约900万个图像,其带有标签的视频存储库YouTube-8M可链接到700万个带标签的视频,ImageNet是这类早期数据库之一,拥有超过1400万个分类图像。培训数据集的规模继续增长,Facebook最近宣布已经编辑了35亿张在Instagram上公开发布的图片,并使用每张图片的标签作为标签。在ImageNet的基准测试中,使用10亿张这些照片来训练图像识别系统的记录准确率达到了85.4%。

标记训练中使用的数据集的繁琐过程通常使用群集服务进行,例如亚马逊机械土耳其人,它提供了遍布全球的大量低成本劳动力的访问。例如,ImageNet由两年近5万人组成,主要通过Amazon Mechanical Turk招募。然而,Facebook使用公开可用的数据来训练系统的方法可以提供另一种使用数十亿个数据集的训练系统的方法,而无需手动标记的开销。

什么是无监督学习?

相比之下,无监督学习任务算法在数据中识别模式,试图将相似性的数据进行分类。例如爱彼迎将邻居可租用的房屋聚集在一起,或Google新闻每天将类似主题的故事分组在一起。

该算法不是为了挑选特定类型的数据而设计,它只是查找可以按照其相似性进行分组的数据,或寻找突出异常的数据。

什么是深度学习和深层神经网络

机器学习的一个子集是深度学习,其中神经网络被扩展到具有大量数据训练庞大网络中。正是这些深度神经网络推动了计算机执行语音识别计算机视觉方面能力的飞跃发展。

各种类型的神经网络,有不同的优势和劣势。递归神经网络是特别适用于语言处理和语音识别的一类神经网络,而卷积神经网络更常用于图像识别。神经网络的设计也在不断发展,研究人员最近为有效类型的深度神经网络设计了一种更高效的设计,称为长期短期记忆或LSTM,使其能够快速运行,例如Google翻译。

进化算法的AI技术甚至被用于优化神经网络。该方法最近由优步人工智能实验室展示,该实验室发布了关于使用遗传算法训练深度神经网络以强化学习问题的论文。

机器学习用来干什么?

机器学习系统一直在我们身边使用,是现代互联网的基石。用于为您推荐在亚马逊上想要购买的产品或想要在Netflix上观看的视频。

每个Google搜索都使用多个机器学习系统,通过个性化搜索结果来了解查询中的语言,因此搜索“低音”的钓鱼爱好者不会被吉他的结果所淹没。同样,Gmail的垃圾邮件和网络钓鱼识别系统也使用经过机器学习的训练模型,让您的收件箱避开流氓信息

虚拟助手如苹果的Siri,亚马逊的Alexa,谷歌助理和微软Cortana是机器学习最典型的例子。

除此之外,在许多其它行业中也有许多用处,包括:无人驾驶汽车,无人驾驶飞机的计算机视觉;聊天机器人和服务机器人的语音识别;人脸识别;帮助放射科医生在X射线中挑选肿瘤,帮助研究人员发现与疾病相关的基因序列,并找出可能导致医疗保健中更有效药物的分子;通过分析物联网传感器数据,允许对基础设施进行预测性维护等等。

本文由自兴动脑人工智能学员:柯斌斌提供

借助此文,接下来我们会一步步讲到深度学习,本文做为一个跳板。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30106

    浏览量

    268392
  • 人工智能
    +关注

    关注

    1791

    文章

    46845

    浏览量

    237528
  • 机器学习
    +关注

    关注

    66

    文章

    8377

    浏览量

    132403
  • 深度学习
    +关注

    关注

    73

    文章

    5492

    浏览量

    120975
收藏 人收藏

    评论

    相关推荐

    一文读懂人工智能、机器学习神经网络深度学习关系

    接触人工智能的内容时,经常性的会看到人工智能,机器学习深度学习还有神经网络的不同的术语,一个个
    的头像 发表于 05-07 08:55 4.2w次阅读
    一文读懂<b class='flag-5'>人工智能</b>、机器<b class='flag-5'>学习</b>、<b class='flag-5'>神经网络</b>及<b class='flag-5'>深度</b><b class='flag-5'>学习</b>关系

    详解深度学习神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度
    的头像 发表于 01-11 10:51 1900次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用

    机器学习深度学习、卷积神经网络...人工智能时代的曙光

    智能——但是我们已经看到了一条充满潜力的道路。目前人工智能(AI)已经发展为一系列技术:机器学习深度学习、卷积
    发表于 05-22 09:54

    人工智能和机器学习的前世今生

    也被称为深度神经网络,因为决策树的嵌套层次结构的层数是数以百万计的数据节点。让你的机器学习人工智能认证计数自从第一次工业革命以来,机器就一直驱动着我们的生活方式,使之成为当今工业4.0
    发表于 08-27 10:16

    人工神经网络算法的学习方法与应用实例(pdf彩版)

    物体所作出的交互反应,是模拟人工智能的一条重要途径。人工神经网络与人脑相似性主要表现在:①神经网络获取的知识是从外界环境学习得来的;②各
    发表于 10-23 16:16

    【专辑精选】人工智能神经网络教程与资料

    电子发烧友总结了以“神经网络”为主题的精选干货,今后每天一个主题为一期,希望对各位有所帮助!(点击标题即可进入页面下载相关资料)人工神经网络算法的学习方法与应用实例(pdf彩版)卷积
    发表于 05-07 19:18

    人工智能:超越炒作

    ,路径规划和异常检测,以及用于在这些引擎上部署机器学习模型(包括神经网络和经典机器学习算法)的平台和工具的集成。这只是第一步,因为恩智浦已经在努力将可扩展的人工智能加速器集成到其设备中
    发表于 05-29 10:46

    史上最全AI人工智能入门+进阶学习视频全集(200G)【免费领取】

    语言使用,数学库、数据结构及相关算法,深入学习AI算法模型训练、分析,神经网络、机器学习深度学习等因此,为了帮助大家更好的入门
    发表于 11-27 12:10

    人工智能、数据挖掘、机器学习深度学习的关系

    人工智能、数据挖掘、机器学习深度学习之间,主要有什么关系?
    发表于 03-16 11:35

    改善深层神经网络--超参数优化、batch正则化和程序框架 学习总结

    深度学习工程师-吴恩达》02改善深层神经网络--超参数优化、batch正则化和程序框架 学习总结
    发表于 06-16 14:52

    人工智能AI-深度学习C#&LabVIEW视觉控制演示效果

    不断变化的,因此深度学习人工智能AI的重要组成部分。可以说人脑视觉系统和神经网络。2、目标检测、目标跟踪、图像增强、强化学习、模型压缩、视
    发表于 11-27 11:54

    人工智能对汽车芯片设计的影响是什么

    点击上方“蓝字”,关注我们,感谢!人工智能(AI)以及利用神经网络深度学习是实现高级驾驶辅助系统(ADAS)和更高程度车辆自主性的强大技术。随着
    发表于 12-17 08:17

    什么是人工智能、机器学习深度学习和自然语言处理?

    如下。深度学习是一种基于人工神经网络的机器学习,通过多层次的处理,逐步从数据中提取更高层次的特征
    发表于 03-22 11:19

    《移动终端人工智能技术与应用开发》人工智能的发展与AI技术的进步

    人工智能打发展是算法优先于实际应用。近几年随着人工智能的不断普及,许多深度学习算法涌现,从最初的卷积神经网络(CNN)到机器
    发表于 02-17 11:00

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识
    的头像 发表于 07-02 18:19 801次阅读