0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI在未来如何实现真正的“智能”?人工智能要继续前进,到底要不要模仿大脑?

DPVg_AI_era 来源:未知 作者:李倩 2018-08-06 08:58 次阅读

AI在未来如何实现真正的“智能”?这个问题似乎遭遇瓶颈。目前深度学习对人类大脑的模拟仍然处于初级阶段,是否应该沿这条路继续走下去?吴恩达认为,通过深度学习模拟大脑,未来的AI能够比人类更快地完成精神层面的任务。也有研究人员认为,应从大自然中寻找灵感,让AI建立关于世界的“心理模型”。

现在,我们已经将AI技术应用在自动驾驶和医疗上,甚至10多亿中国公民的社会信用评分都可以依靠AI技术,现在我们已经在讨论如何让AI学会自己不会做的事情。AI技术曾经仅仅是一个学术问题,而现在已经成为高达数十亿美元的人才和基础设施的产业,而且关系到人类的未来。

关于这个问题的讨论焦点是,目前构建AI的是否足够。我们能够通过对现有技术的调整,利用足够强大的计算力,来实现被认为仅存在于人和动物身上的真正的“智能”?

关于这个问题,辩论的一方是“深度学习”的支持者 - 自2012年多伦多大学三位研究人员的一篇具有里程碑意义的论文以来,深度学习已经大受欢迎。虽然它远非人工智能的唯一方法,但已经证明了我们能够实现以前的技术无法实现的成就。

“深度学习”中的“深度”是指其网络中人工神经元的层数。生物学上的“神经元”一样,具有更多层神经元的人工神经系统能够进行更复杂的学习。

吴恩达:模拟人脑,未来AI完成精神层面任务只需几秒

要理解人工神经网络,可以想象一下空间中的一堆点,就像我们大脑中的神经元一样。调整这些点之间连接的强度,就是在大致模拟大脑学习时发生的事情。模拟结果产生一幅神经连接图,图中包括达到期望结果(比如正确识别出图像)的最佳途径。

今天的深度学习系统还达不到我们的大脑的复杂度。它们充其量看起来就像视网膜的外表面,只有少数几层神经元对图像进行初始处理。

这种网络不太可能胜任我们大脑能完成的所有任务。因为它们并不能像真正的“智能”生物那样了解世界,所以网络显得很脆弱,容易造成混淆。比如,研究人员能够只改变图像中的单个像素,就可以成功欺骗流行的图像识别算法

尽管存在局限性,深度学习还是为研发图像和语音识别、机器翻译和棋类游戏中击败人类的黄金标准软件提供了强大动力。深度学习是谷歌研发定制化AI芯片和这些利用这些芯片运行的AI云服务的动力,Nvidia的自动驾驶汽车技术也是如此。

吴恩达

人工智能领域中最具影响力的人之一、曾在谷歌大脑工作并担任百度前人工智能首席科学家的吴恩达表示,通过深度学习,计算机应该能够完成普通人在一秒或几秒内就能完成的任何精神层面的任务。而且计算机的完成速度甚至可以比人类更快。

推进AI需要从大自然中寻找灵感

而这场讨论中同样有研究人员持相反观点,比如Uber公司人工智能部门的前负责人、现纽约大学教授Gary Marcus认为深度学习远不足以完成我们能够完成的各种事情。他认为,深度学习永远无法取代全部的白领工作,无法引领我们走向全自动化的、“奢侈化共产主义”的辉煌未来。

Marcus博士表示,要获得“通用智能”需要具备推理能力,能够自己学习,建立关于世界的心理模型,这些都超出了现在AI的能力。

“目前我们利用深度学习取得了很多里程碑式的成就,但这并不意味着深度学习是建立思维理论或抽象推理的正确工具。”马库斯博士说。

为了进一步推进人工智能,“我们需要从大自然中获取灵感。”Marcus博士说。也就是说要建立其他类型的人工神经网络,并在某些情况下为其提供与生俱来的预编程的知识,就像所有生物都具备的天生本能一样。

纽约大学教授Gary Marcus

研究人员还在努力让AI建立关于世界的心理模型,一般婴儿在一岁时就能建立这种模型了。因此,就算一个AI系统已经见过一百万张校车的图片,但当它第一次见到一辆翻车的校车时,可能还是认不出来。如果AI能够构建一个心理模型,其中包括校车的车轮、黄色底盘等,认出翻车的校车可能就没那么难了。

人工智能促进协会(AAAI)前主席Thomas Dietterich表示,努力寻找其他类型人工智能的深度学习是很好的做法,但重要的是,不能在总体上忽视深度学习和机器学习的神奇之处。

“对于机器学习研究来说,我们的目标是看看能在多大程度上让计算机系统从数据和经验中学习,而不是手工构建这些系统。”Dietterich博士说,问题不在于人工智能中的先天知识不好,人类一开始就根本不知道自己掌握了哪些先天知识。

Duvenaud博士说:“原则上,我们在研究如何构建未来的AI时不需要参考生物学。” 但他也表示,那些能够成功实现以深度学习为重点的、更复杂的系统目前还没有取得成功。

Marcus博士说,在弄清楚如何让AI变得更智能、更强大之前,我们仍必须向AI系统中输入大量现有的人类知识。也就是说,像自动驾驶软件这样的AI系统中的许多“智能”根本就不是“人工”的。虽然很多企业需要在尽量多的真实道路上训练自动驾驶车,但现在,使这些AI系统真正获得自驾能力,仍然需要人工输入大量的逻辑,这些逻辑反映了构建和测试自动驾驶车辆的工程师们做出的决策。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31443

    浏览量

    269836
  • 神经元
    +关注

    关注

    1

    文章

    363

    浏览量

    18487
  • 深度学习
    +关注

    关注

    73

    文章

    5511

    浏览量

    121398

原文标题:吴恩达:模拟人脑,未来AI执行精神层面任务有望快过人类!

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    应用场景。例如,智能家居领域,嵌入式系统可以控制各种智能设备,如智能灯泡、智能空调等,而人工智能
    发表于 11-14 16:39

    AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    驱动科学创新》的第6章为我提供了宝贵的知识和见解,让我对人工智能在能源科学中的应用有了更深入的认识。通过阅读这一章,我更加坚信人工智能未来能源科学领域中的重要地位和作用。同时,我也意识到
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 阅读这一章后,我对未来生命科学的发展充满了期待。我相信,人工智能技术的推动下,生命科学将取得更加显著
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    ,推动科学研究的深入发展。 总结 通过阅读《AI for Science:人工智能驱动科学创新》第二章,我对AI for Science的技术支撑有了更加全面和深入的理解。我深刻认识到AI
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能AI)如何深刻影响并推动科学创新的道路。阅读这一章后,我深刻感受到了人工智能技术科学领域的广泛应用潜
    发表于 10-14 09:12

    risc-v人工智能图像处理应用前景分析

    、RISC-V人工智能图像处理中的应用案例 目前,已有多个案例展示了RISC-V人工智能图像处理中的应用潜力。例如: Esperanto技术公司 :该公司制造的首款高性能RISC-
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    大力发展AI for Science的原因。 第2章从科学研究底层的理论模式与主要困境,以及人工智能三要素(数据、算法、算力)出发,对AI for Science的技术支撑进行解读。 第3章介绍了
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用
    发表于 08-22 15:00

    FPGA人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    Python人工智能领域的应用

    功能强大的编程语言,成为了人工智能研究和开发的首选工具之一。本文将深入探讨Python人工智能领域的广泛应用,分析其优势、具体应用案例以及未来的发展趋势。
    的头像 发表于 07-02 18:20 1242次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    https://t.elecfans.com/v/25653.html 人工智能 初学者完整学习流程实现手写数字识别案例_Part1 13分59秒 https://t.elecfans.com/v
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    ://t.elecfans.com/v/25653.html 人工智能 初学者完整学习流程实现手写数字识别案例 28分55秒 https://t.elecfans.com/v/27184.html
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    。 国内外科技巨头纷纷争先入局,微软、谷歌、苹果、脸书等积极布局人工智能的同时,国内的BAT、华为、小米等科技公司也相继切入到嵌入式人工智能的赛道。那么嵌入式AI可就业的方向有哪些呢
    发表于 02-26 10:17