0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Python2D绘图库Matplotlib会用吗?

马哥Linux运维 来源:未知 作者:胡薇 2018-08-06 09:09 次阅读

Matplotlib是一个Python语言的2D绘图库,它支持各种平台,并且功能强大,能够轻易绘制出各种专业的图像。本文是对它的一个入门教程

运行环境

由于这是一个Python语言的软件包,因此需要你的机器上首先安装好Python语言的环境。关于这一点,请自行在网络上搜索获取方法。

关于如何安装Matplotlib请参见这里:Matplotlib Installing。

笔者推荐大家通过pip的方式进行安装,具体方法如下:

sudo pip3 installmatplotlib

本文的代码在如下环境中测试:

Apple OS X 10.13

Python 3.6.3

matplotlib 2.1.1

numpy 1.13.3

介绍

Matplotlib适用于各种环境,包括:

Python脚本

IPython shell

Jupyternotebook

Web应用服务器

用户图形界面工具包

使用Matplotlib,能够的轻易生成各种类型的图像,例如:直方图,波谱图,条形图,散点图等。并且,可以非常轻松的实现定制。

入门代码示例

下面我们先看一个最简单的代码示例,让我们感受一下Matplotlib是什么样的:

# test.py

importmatplotlib.pyplotasplt

import numpyasnp

data=np.arange(100,201)

plt.plot(data)

plt.show()

这段代码的主体逻辑只有三行,但是它却绘制出了一个非常直观的线性图,如下所示:

对照着这个线形图,我们来讲解一下三行代码的逻辑:

通过np.arange(100, 201)生成一个[100, 200]之间的整数数组,它的值是:[100, 101, 102, … , 200]

通过matplotlib.pyplot将其绘制出来。很显然,绘制出来的值对应了图中的纵坐标(y轴)。而matplotlib本身为我们设置了图形的横坐标(x轴):[0, 100],因为我们刚好有100个数值

通过plt.show()将这个图形显示出来

这段代码非常的简单,运行起来也是一样。如果你已经有了本文的运行环境,将上面的代码保存到一个文本文件中(或者通过Github获取本文的源码),然后通过下面的命令就可以在你自己的电脑上看到上面的图形了:

python3test.py

注1:后面的教程中,我们会逐步讲解如何定制图中的每一个细节。例如:坐标轴,图形,着色,线条样式,等等。

注2:如果没有必要,下文的截图会去掉图形外侧的边框,只保留图形主体。

一次绘制多个图形

有些时候,我们可能希望一次绘制多个图形,例如:两组数据的对比,或者一组数据的不同展示方式等。

可以通过下面的方法创建多个图形:

多个figure

可以简单的理解为一个figure就是一个图形窗口。matplotlib.pyplot会有一个默认的figure,我们也可以通过plt.figure()创建更多个。如下面的代码所示:

# figure.py

importmatplotlib.pyplotasplt

import numpyasnp

data=np.arange(100,201)

plt.plot(data)

data2=np.arange(200,301)

plt.figure()

plt.plot(data2)

plt.show()

这段代码绘制了两个窗口的图形,它们各自是一个不同区间的线形图,如下所示:

注:初始状态这两个窗口是完全重合的。

多个subplot

有些情况下,我们是希望在同一个窗口显示多个图形。此时就这可以用多个subplot。下面是一段代码示例:

# subplot.py

importmatplotlib.pyplotasplt

import numpyasnp

data=np.arange(100,201)

plt.subplot(2,1,1)

plt.plot(data)

data2=np.arange(200,301)

plt.subplot(2,1,2)

plt.plot(data2)

plt.show()

这段代码中,除了subplot函数之外都是我们熟悉的内容。subplot函数的前两个参数指定了subplot数量,即:它们是以矩阵的形式来分割当前图形,两个整数分别指定了矩阵的行数和列数。而第三个参数是指矩阵中的索引

因此,下面这行代码指的是:2行1列subplot中的第1个subplot。

plt.subplot(2,1,1)

下面这行代码指的是:2行1列subplot中的第2个subplot。

plt.subplot(2,1,2)

所以这段代码的结果是这个样子:

subplot函数的参数不仅仅支持上面这种形式,还可以将三个整数(10之内的)合并一个整数。例如:2, 1, 1可以写成211,2, 1, 2可以写成212。

因此,下面这段代码的结果是一样的:

importmatplotlib.pyplotasplt

import numpyasnp

data=np.arange(100,201)

plt.subplot(211)

plt.plot(data)

data2=np.arange(200,301)

plt.subplot(212)

plt.plot(data2)

plt.show()

subplot函数的详细说明参见这里:matplotlib.pyplot.subplot

常用图形示例

Matplotlib可以生成非常多的图形式样,多到令人惊叹的地步。大家可以在这里:Matplotlib Gallery感受一下。

本文作为第一次的入门教程,我们先来看看最常用的一些图形的绘制。

线性图

前面的例子中,线性图的横轴的点都是自动生成的,而我们很可能希望主动设置它。另外,线条我们可能也希望对其进行定制。看一下下面这个例子:

# plot.py

importmatplotlib.pyplotasplt

plt.plot([1,2,3],[3,6,9],'-r')

plt.plot([1,2,3],[2,4,9],':g')

plt.show()

这段代码可以让我们得到这样的图形:

这段代码说明如下:

plot函数的第一个数组是横轴的值,第二个数组是纵轴的值,所以它们一个是直线,一个是折线;

最后一个参数是由两个字符构成的,分别是线条的样式和颜色。前者是红色的直线,后者是绿色的点线。关于样式和颜色的说明请参见plot函数的API Doc:matplotlib.pyplot.plot

散点图

scatter函数用来绘制散点图。同样,这个函数也需要两组配对的数据指定x和y轴的坐标。下面是一段代码示例:

# scatter.py

importmatplotlib.pyplotasplt

import numpyasnp

N=20

plt.scatter(np.random.rand(N)*100,

np.random.rand(N)*100,

c='r',s=100,alpha=0.5)

plt.scatter(np.random.rand(N)*100,

np.random.rand(N)*100,

c='g',s=200,alpha=0.5)

plt.scatter(np.random.rand(N)*100,

np.random.rand(N)*100,

c='b',s=300,alpha=0.5)

plt.show()

这段代码说明如下:

这幅图包含了三组数据,每组数据都包含了20个随机坐标的位置

参数c表示点的颜色,s是点的大小,alpha是透明度

这段代码绘制的图形如下所示:

scatter函数的详细说明参见这里:matplotlib.pyplot.scatter

饼状图

pie函数用来绘制饼状图。饼状图通常用来表达集合中各个部分的百分比。

# pie.py

importmatplotlib.pyplotasplt

import numpyasnp

labels=['Mon','Tue','Wed','Thu','Fri','Sat','Sun']

data=np.random.rand(7)*100

plt.pie(data,labels=labels,autopct='%1.1f%%')

plt.axis('equal')

plt.legend()

plt.show()

这段代码说明如下:

data是一组包含7个数据的随机数值

图中的标签通过labels来指定

autopct指定了数值的精度格式

plt.axis('equal')设置了坐标轴大小一致

plt.legend()指明要绘制图例(见下图的右上角)

这段代码输出的图形如下所示:

pie函数的详细说明参见这里:matplotlib.pyplot.pie

条形图

bar函数用来绘制条形图。条形图常常用来描述一组数据的对比情况,例如:一周七天,每天的城市车流量。

下面是一个代码示例:

# bar.py

importmatplotlib.pyplotasplt

import numpyasnp

N=7

x=np.arange(N)

data=np.random.randint(low=0,high=100,size=N)

colors=np.random.rand(N *3).reshape(N,-1)

labels=['Mon','Tue','Wed','Thu','Fri','Sat','Sun']

plt.title("Weekday Data")

plt.bar(x,data,alpha=0.8,color=colors,tick_label=labels)

plt.show()

这段代码说明如下:

这幅图展示了一组包含7个随机数值的结果,每个数值是[0, 100]的随机数

它们的颜色也是通过随机数生成的。np.random.rand(N * 3).reshape(N, -1)表示先生成21(N x 3)个随机数,然后将它们组装成7行,那么每行就是三个数,这对应了颜色的三个组成部分。如果不理解这行代码,请先学习一下Python 机器学习库 NumPy 教程

title指定了图形的标题,labels指定了标签,alpha是透明度

这段代码输出的图形如下所示:

bar函数的详细说明参见这里:matplotlib.pyplot.bar

直方图

hist函数用来绘制直方图。直方图看起来是条形图有些类似。但它们的含义是不一样的,直方图描述了数据中某个范围内数据出现的频度。这么说有些抽象,我们通过一个代码示例来描述就好理解了:

# hist.py

importmatplotlib.pyplotasplt

import numpyasnp

data=[np.random.randint(0,n,n)fornin[3000,4000,5000]]

labels=['3K','4K','5K']

bins=[0,100,500,1000,2000,3000,4000,5000]

plt.hist(data,bins=bins,label=labels)

plt.legend()

plt.show()

上面这段代码中,[np.random.randint(0, n, n) for n in [3000, 4000, 5000]]生成了包含了三个数组的数组,这其中:

第一个数组包含了3000个随机数,这些随机数的范围是 [0, 3000)

第二个数组包含了4000个随机数,这些随机数的范围是 [0, 4000)

第三个数组包含了5000个随机数,这些随机数的范围是 [0, 5000)

bins数组用来指定我们显示的直方图的边界,即:[0, 100) 会有一个数据点,[100, 500)会有一个数据点,以此类推。所以最终结果一共会显示7个数据点。同样的,我们指定了标签和图例。

这段代码的输出如下图所示:

在这幅图中,我们看到,三组数据在3000以下都有数据,并且频度是差不多的。但蓝色条只有3000以下的数据,橙色条只有4000以下的数据。这与我们的随机数组数据刚好吻合。

hist函数的详细说明参见这里:matplotlib.pyplot.hist

结束语

通过本文,我们已经知道了Matplotlib的大致使用方法和几种最基本的图形的绘制方式。

需要说明的是,由于是入门教程,因此本文中我们只给出了这些函数和图形最基本的使用方法。但实际上,它们的功能远不止这么简单。因此本文中我们贴出了这些函数的API地址以便读者进一步的研究。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • python
    +关注

    关注

    56

    文章

    4798

    浏览量

    84810

原文标题:Python 绘图库 Matplotlib 入门教程

文章出处:【微信号:magedu-Linux,微信公众号:马哥Linux运维】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    学习Python大数据与机器学习必会Matplotlib知识

    python的培训学习中,我们会用python进行数据分析的学习与应用,并且在这一部分进行绘图是必不可少的,所以为了看一下大家的实力,今天我们py
    发表于 07-05 17:57

    matplotlib绘图中编写的辅助函数总结

    matplotlib做图中常用的辅助函数
    发表于 05-17 17:12

    使用Python做一个眼图的绘制库

    本例使用了Python中的两个绘图库matplotlib和pyqtgraph,对眼图进行了绘制,同时包含了对眼图使用bokeh效果。
    发表于 06-12 15:18

    数据可视化之Python-matplotlib概述

    数据可视化(二):Python-matplotlib
    发表于 07-22 14:58

    python matplotlib模块报错的解决方法

    pyenv下使用python matplotlib模块的问题解决
    发表于 10-30 09:12

    TensorFlow常用Python扩展包

    时,如果尚未安装 Numpy,它将被自动安装。Matplolib:这是 Python 2D 绘图库。使用它可以只用几行代码创建各类图,包括直方、条形图、错误图、散点图和功率谱等。它可以使用 pip 进行
    发表于 07-28 14:35

    电动机效率 matlab,【原创】matplotlib绘制电机效率MAP图 精选资料分享

    matplotlib简介matplotlibPython的第三方工具包,顾名思义它是一个关于矩阵及绘图的开发包,里面丰富的函数以及类似MATLAB的函数可以让我们很快绘制一幅图像(F
    发表于 09-01 06:31

    Python绘图库Matplotlib入门教程

    这段代码中,除了subplot函数之外都是我们熟悉的内容。subplot函数的前两个参数指定了subplot数量,即:它们是以矩阵的形式来分割当前图形,两个整数分别指定了矩阵的行数和列数。而第三个参数是指矩阵中的索引。
    的头像 发表于 06-26 11:53 4910次阅读
    <b class='flag-5'>Python</b><b class='flag-5'>绘图库</b><b class='flag-5'>Matplotlib</b>入门教程

    用于数据科学的python必学模块之Matplotlib的资料说明

    本文档的主要内容详细介绍的是用于数据科学的python必学模块之Matplotlib的资料说明。
    发表于 09-18 08:00 14次下载
    用于数据科学的<b class='flag-5'>python</b>必学模块之<b class='flag-5'>Matplotlib</b>的资料说明

    PythonMatplotlib函数汇总

    本文档的主要内容详细介绍的是PythonMatplotlib函数汇总免费下载。
    发表于 12-17 08:00 2次下载

    使用Python进行Arduino实时绘图

    电子发烧友网站提供《使用Python进行Arduino实时绘图.zip》资料免费下载
    发表于 11-08 11:59 1次下载
    使用<b class='flag-5'>Python</b>进行Arduino实时<b class='flag-5'>绘图</b>

    功能强大的开源Python绘图库

    我之前一直守着 matplotlib 用的原因,就是为了我学会它复杂的语法,已经“沉没"在里面的几百个小时的时间成本。这也导致我花费了不知多少个深夜,在 StackOverflow 上搜索如何“格式化日期”或“增加第二个Y轴”。
    的头像 发表于 11-17 15:05 668次阅读

    使用Python来收集、处理和可视化人口数据

    数据分析和可视化: pandas:一个提供高性能、易用的数据结构和数据分析工具的库。 requests:一个简洁、优雅的HTTP库,用于发送网络请求和获取数据。 matplotlib:一个强大的绘图库,支持多种图形和样式。 seaborn:一个基于
    的头像 发表于 06-21 17:08 1426次阅读
    使用<b class='flag-5'>Python</b>来收集、处理和可视化人口数据

    分享10个适用于多个学科的Python数据可视化库

    matplotlibPython可视化程序库的泰斗。经过十几年它任然是Python使用者最常用的画图库。它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。
    的头像 发表于 08-14 10:40 809次阅读
    分享10个适用于多个学科的<b class='flag-5'>Python</b>数据可视化库

    pythonmatplotlib和seaborn介绍

    的使用和分析,而数据的整合最好的方式就是使用可视化的方式将数据变现出来。 matplotlib和seabornde介绍 在Python中,我们可以使用matplotlib库和seaborn库来生成各种图表。
    的头像 发表于 10-07 11:16 1029次阅读
    <b class='flag-5'>python</b>中<b class='flag-5'>matplotlib</b>和seaborn介绍