0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

HEV/EV电池管理系统简介

章鹰观察 来源:德州仪器 作者:Martin Moss 2018-08-06 16:29 次阅读

(本文为德州仪器供稿,作者德州仪器Martin Moss)如图所示,电动汽车(EV)的基本传动系统由三个系统模块组成。

电池组是由多个电池(通常是纯电动汽车中的锂离子电池)组成的阵列,可产生高达数百伏的电压。电池组的电压取决于电动汽车的系统需求。

系统的第二个组成部分是逆变器。电动汽车采用的交流牵引电机可在汽车完全停止状态提供加速度,而且非常可靠。电池组的电压为直流(DC),通过逆变器转换成交流(AC)(通常为三相)。与电压一样,相数取决于系统需求和所用电机的类型,但通常为三相。

所用的电机通常为感应电动机,需使用交流电压。此类电机常用于电动汽车,因为它们易于驱动、性能可靠且具有成本效益。电机的外层组件是定子,上面缠绕着三个线圈。内层通常是由铜条或铝条构成的转子。

图1:电动汽车传动链的简单流程 – 电池管理系统(BMS)到逆变器,然后到三相交流电机

本文将介绍与电池组和管理电荷状态相关的注意事项。由于电池组由多个电池串联而成,其有效使用性能基于最薄弱的单个电池。电池的电量存在差异是由于制造过程中的化学失衡,在电池组中的位置(热量变化)以及使用或寿命相关的改变。

电池电压之间的差异指示系统层面电池的失衡。造成这种差异的原因至今仍在研究之中。充分了解这一点是非常重要的,因为它影响着电池组在电力输出方面的持续时间,以及每个单体电池的可用寿命和电池组的使用寿命。

需要考虑的最重要参数之一是电荷状态。由于各个单体电池的电量不同,因此我们以百分比来反映电池之间的电量不平衡情况。如果一个电池的电荷状态为94%,另一个电池的电荷状态为88%,则两者的电量存在6%的不平衡。此外,每个电池也有不同的电压,称为开路电压(OCV),这是化学电荷状态。

电池组面临的挑战是在汲取电流时,并非每个电池都会以相同的速率损失电量。因此,即使电池串联连接,放电率也会以不同的速度发生。由于一些电池的吸收量低于其他电池,因此它们回收和吸收电量的能力将随着时间而改变。其他条件(包括温度)则会加速该循环。正如前文提到的那样,一些电池单元可能会因其定位或位置靠近散热元件而变得更热。

电池故障的主要原因是电池完全崩溃,这将影响电池电压,因为电池基本上只是一个降低电压的电阻。避免这种情况的一种方法是通过电池平衡,电池平衡是管理如何使每个单体电池充满电的过程。有几种技术可以实现电池平衡;最简单的方法是在每个单体电池上并联一个电阻和一个金属氧化物半导体场效应晶体管MOSFET),通过监视电压的比较器监测各单体电池的电压,并使用简单的算法开启MOSFET为电池分流。这种方法的缺点是旁路能源浪费。

另一种技术被称为电荷转移,它不使用电阻器,单体电池之间只连接一个电容器。这种技术不会造成旁路能源浪费,但它更复杂,因为您需要在更宽距离上连接电池,而不是绕过每个单体电池。

电动汽车中使用的技术通常是电感式充电,其中变压器连接不平衡的单体电池,因为它是较高功率的系统。电路设计趋于大型,这需要设计包括更大的面积以适应实施解决方案所需的电路数量。

所有这些平衡都基于对单电池特征和化学的广泛研究,由使用MATLAB等工具运行它们的电子表格和数学公式来表示。微处理器在系统中起到确保正确执行所有平衡的重要作用。为了给微处理器供电DC/DC转换器直接连接到电池组,并根据系统设计提供48V或12V输出,为系统供电。TI有两个可以为微处理器供电的设备;两者都能够承受苛刻条件下的瞬态特性以及宽电压范围。

LM5165-Q1是一款3V至65V,超低输出同步降压转换器,可在宽输入电压和负载电流范围内提供高效率。该器件具有集成的高端和低端功率MOSFET,能够以3.3V或5V的固定输出电压或可调输出电压的条件下,提供高达150mA的输出电流。该转换器设计旨在简化方案,同时优化诸如电池管理系统等应用性能。在工作温度高达150°C 结温(Tj)时,该器件可以承受电动汽车中的高工作温度范围。

LM46000-Q1 SIMPLE SWITCHER®稳压器是一款同步降压型DC/DC转换器,能够在3.5V至60V的输入电压范围内驱动高达500mA的负载电流。当您需要系统的高输入电压或更大电流时,LM46000-Q1以极小的解决方案尺寸,提供卓越的效率、输出精度和压降电压。

有许多方法可以管理电池组中锂离子电池的平衡,但设计外观取决于许多因素,如成本、尺寸、热特性及精度要求。在实现之前,需要将所有上述因素纳入设计策略的考虑范围。了解有关符合严格汽车和系统要求的TI产品的更多信息,并查看HEV高单体电池数量电池组的系统框图。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11862

    浏览量

    229522
  • HEV
    HEV
    +关注

    关注

    0

    文章

    100

    浏览量

    22156
  • 逆变器
    +关注

    关注

    280

    文章

    4660

    浏览量

    205894
  • bms
    bms
    +关注

    关注

    106

    文章

    965

    浏览量

    65610
收藏 人收藏

    评论

    相关推荐

    HEV / EV电池管理系统简单解释

    电池组是一系列电池(通常是全汽车电动车中的锂离子[锂离子]电池),可产生高达数百伏的电压。EV系统需求将定义电压。
    的头像 发表于 09-11 09:46 7758次阅读

    HEV/EV用电子元器件的设计对策

    HEV/EV 用电子元器件的设计对策 议程1. HEV/EV Category and Passive Component混合/纯电动车种类和被动电子元器件2. DC/DC Conve
    发表于 11-26 11:45

    EV/HEV电池管理系统更安全可靠

    ,并提供与烃动力汽车相当的价格和性能。为了与现有汽车竞争,用于EV/HEV电池必须具有非常高的能量存储密度、接近零的泄漏电流和几分钟(而不是几小时)内完成充电的能力。此外,电池
    发表于 09-25 14:30

    管理HEV中的高压锂离子电池

    管理HEV中的高压锂离子电池
    发表于 08-16 10:26

    如何通过主机自动反向唤醒功能节省HEV/EV电池电量

    (HEV) 和电动汽车 (EV) 配置中,电池管理单元 (BMU) 由一个 12V 的电池供电。为了支持遥控免钥匙进入、安全和
    发表于 11-07 07:03

    混合动力汽车和电动汽车的无线BMS的关键问题

    来进一步提高效率。有关电池管理系统的背景信息,请参阅“HEV/EV电池
    发表于 11-08 06:24

    HEV/EV电池管理系统设计中电池组和管理电荷状态需要注意什么

    HEV/EV电池管理系统设计方案中电池组和管理电荷
    发表于 08-03 19:55 2258次阅读

    HEV/EV电池管理系统的运算放大器应用解决方案研究

    混合动力电动汽车(HEV)和电动汽车(EV)之所以备受欢迎,是因为它们具有低(零)排放和低维护要求,同时提供了更高的效率和驱动性能。新的HEV/EV公司方兴未艾,而且现有的汽车制造商正
    的头像 发表于 01-31 15:22 2987次阅读
    <b class='flag-5'>HEV</b>/<b class='flag-5'>EV</b><b class='flag-5'>电池</b><b class='flag-5'>管理</b><b class='flag-5'>系统</b>的运算放大器应用解决方案研究

    放大器在HEV/EV汽车动力电池管理系统中的作用

    混合动力纯电动车(HEV)和纯电动车(EV)往往深受热烈欢迎,由于他们具备低(零)排污和低维护保养规定,一起出示了更高的高效率和驱动器特性。新的HEV/EV企业大势所趋,并且目前的汽车
    的头像 发表于 01-02 16:34 4205次阅读
    放大器在<b class='flag-5'>HEV</b>/<b class='flag-5'>EV</b>汽车动力<b class='flag-5'>电池</b><b class='flag-5'>管理</b><b class='flag-5'>系统</b>中的作用

    性能更佳的测量系统如何在嘈杂的环境中改善EV/HEV电池的健康状况

    对于驾驶员和乘客而言,现代汽车更安静,即使它不是 EV/HEV但并未听到很多影响内部系统的信号噪声,包括电池电压、温度和电流的测量以及此数据与主电子控制单元(ECU)通信的方式。
    的头像 发表于 06-23 19:11 2098次阅读

    关于混合动力汽车和电动汽车的无线BMS的三个问题

    注意力转向通过减小电池管理系统(BMS)的尺寸和重量来进一步提高效率。 有关电池管理系统的背景信
    的头像 发表于 10-20 16:53 430次阅读

    隔离器件在EV/HEV电池管理系统中的应用研究

    供与烃动力汽车相当的价格和性能。为了与现有汽车竞争,用于EV/HEV电池必须具有非常高的能量存储密度、接近零的泄漏电流和几分钟(而不是几小时)内完成充电的能力。此外,电池
    的头像 发表于 04-13 10:55 2170次阅读
    隔离器件在<b class='flag-5'>EV</b>/<b class='flag-5'>HEV</b><b class='flag-5'>电池</b><b class='flag-5'>管理</b><b class='flag-5'>系统</b>中的应用研究

    基于混合动力汽车和电动汽车的无线BMS的三个问题

    注意力转向通过减小电池管理系统(BMS)的尺寸和重量来进一步提高效率。 有关电池管理系统的背景
    的头像 发表于 01-19 13:48 1351次阅读

    通过主机自动反向唤醒功能节省 HEV/EV电池电量

    通过主机自动反向唤醒功能节省 HEV/EV电池电量
    发表于 10-28 12:00 0次下载
    通过主机自动反向唤醒功能节省 <b class='flag-5'>HEV</b>/<b class='flag-5'>EV</b> 的<b class='flag-5'>电池</b>电量

    吹田电气 | EVHEV 电池的放电测量

    随着全球向可再生能源转型,电动汽车(EV)和混合动力汽车(HEV)的市场份额逐年增加,这两种类型的车辆都依赖于电池技术的进步以提供更高效、更持久的能源储存。由此电池放电测量成为推动新能
    的头像 发表于 12-23 08:33 553次阅读
    吹田电气 | <b class='flag-5'>EV</b>、<b class='flag-5'>HEV</b> <b class='flag-5'>电池</b>的放电测量