0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

物理学家眼中“最美丽”的科学之魂,盘点世界十大最美物理实验!

454398 来源:未知 作者:工程师吴畏 2018-08-07 14:40 次阅读

被评出的十大最美物理实验共同之处是:它们都“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,最根本、最单纯的科学结论,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。

无论在加速器中裂解亚原子粒子,还是测序基因序列,或分析一颗遥远恒星的摆动,这些让世界瞩目的实验常常动辄耗资百万美元,产生出洪水般汹涌的数据,并需要超高速计算机处理几个月。一些实验小组因此成长为一个个的小公司。

2005年9月份出版的《物理学世界》刊登了选出的排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。

所有这些实验共同之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。

从十大经典科学实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。

1.托马斯·杨的双缝演示应用于电子干涉实验

牛顿和托马斯·杨对光的性质研究得出的结论都不完全正确。光既不是简单的由微粒构成,也不是一种单纯的波。20世纪初,麦克斯·普克朗和阿尔伯特·爱因斯坦分别指出一种叫光子的东西发出光和吸收光。但是其他实验还是证明光是一种波状物。经过几十年发展的量子学说最终总结了两个矛盾的真理:光子和亚原子微粒(如电子、光子等等)是同时具有两种性质的微粒,物理上称它们:波粒二象性。

物理学家眼中“最美丽”的科学之魂,盘点世界十大最美物理实验!

将托马斯·杨的双缝演示改造一下可以很好地说明这一点。科学家们用电子流代替光束来解释这个实验。根据量子力学,电粒子流被分为两股,被分得更小的粒子流产生波的效应,它们相互影响,以至产生像托马斯·杨的双缝演示中出现的加强光和阴影。这说明微粒也有波的效应。

2.伽利略的自由落体实验

在16世纪末,人人都认为重量大的物体比重量小的物体下落得快,因为伟大的亚里士多德已经这么说了。伽利略,当时在比萨大学数学系任职,他大胆地向公众的观点挑战。著名的比萨斜塔实验已经成为科学中的一个故事:他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地。伽利略挑战亚里士多德的代价也许是他失去了工作,但他展示的是自然界的本质,而不是人类的权威,科学作出了最后的裁决。

3.罗伯特·米利肯的油滴实验

很早以前,科学家就在研究电。人们知道这种无形的物质可以从天上的闪电中得到,也可以通过摩擦头发得到。1897年,英国物理学家J·J·托马斯已经确立电流是由带负电粒子即电子组成的。1909年美国科学家罗伯特·米利肯开始测量电流的电荷。

米利肯用一个香水瓶的喷头向一个透明的小盒子里喷油滴。小盒子的顶部和底部分别连接一个电池,让一边成为正电板,另一边成为负电板。当小油滴通过空气时,就会吸一些静电,油滴下落的速度可以通过改变电板间的电压来控制。

米利肯不断改变电压,仔细观察每一颗油滴的运动。经过反复试验,米利肯得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量。

4.牛顿的棱镜分解太阳光

艾萨克·牛顿出生那年,伽利略与世长辞。牛顿1665年毕业于剑桥大学的三一学院,后来因躲避鼠疫在家里呆了两年,后来顺利地得到了工作。

当时大家都认为白光是一种纯的没有其它颜色的光(亚里士多德就是这样认为的),而彩色光是一种不知何故发生变化的光。

为了验证这个假设,牛顿把一面三棱镜放在阳光下,透过三棱镜,光在墙上被分解为不同颜色,后来我们称作为光谱。人们知道彩虹的五颜六色,但是他们认为那是因为不正常。牛顿的结论是:正是这些红、橙、黄、绿、青、蓝、紫基础色有不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的。

5.托马斯·杨的光干涉实验

物理学家眼中“最美丽”的科学之魂,盘点世界十大最美物理实验!

牛顿也不是永远正确。在多次争吵后,牛顿让科学界接受了这样的观点:光是由微粒组成的,而不是一种波。1830年,英国医生、物理学家托马斯·杨用实验来验证这一观点。他在百叶窗上开了一个小洞,然后用厚纸片盖住,再在纸片上戳一个很小的洞。让光线透过,并用一面镜子反射透过的光线。然后他用一个厚约1/30英寸的纸片把这束光从中间分成两束。结果看到了相交的光线和阴影。这说明两束光线可以像波一样相互干涉。这个实验为一个世纪后量子学说的创立起到了至关重要的作用。

6.卡文迪许扭矩实验

牛顿的另一伟大贡献是他的万有引力定律,但是万有引力到底多大?

物理学家眼中“最美丽”的科学之魂,盘点世界十大最美物理实验!

18世纪末,英国科学家亨利·卡文迪许决定要找出这个引力。他将两边系有小金属球的6英尺木棒用金属线悬吊起来,这个木棒就像哑铃一样。再将两个350磅重的铅球放在相当近的地方,以产生足够的引力让哑铃转动,并扭转金属线。然后用自制的仪器测量出微小的转动。

测量结果惊人的准确,他测出了万有引力恒量的参数,在此基础上卡文迪许计算地球的密度和质量。卡文迪许的计算结果是:地球重6.0×1024公斤,或者说13万亿万亿磅。

7.埃拉托色尼测量地球圆周长

古埃及的一个现名为阿斯旺的小镇。在这个小镇上,夏至日正午的阳光悬在头顶:物体没有影子,阳光直接射入深水井中。埃拉托色尼是公元前3世纪亚历山大图书馆馆长,他意识到这一信息可以帮助他估计地球的周长。在以后几年里的同一天、同一时间,他在亚历山大测量了同一地点的物体的影子。发现太阳光线有轻微的倾斜,在垂直方向偏离大约7度角。

物理学家眼中“最美丽”的科学之魂,盘点世界十大最美物理实验!

剩下的就是几何学问题了。假设地球是球状,那么它的圆周应跨越360度。如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离。因此地球周长应该是25万个希腊运动场。今天,通过航迹测算,我们知道埃拉托色尼的测量误差仅仅在5%以内。

8.伽利略的加速度实验

物理学家眼中“最美丽”的科学之魂,盘点世界十大最美物理实验!

伽利略继续提炼他有关物体移动的观点。他做了一个6米多长,3米多宽的光滑直木板槽。再把这个木板槽倾斜固定,让铜球从木槽顶端沿斜面滑下,并用水钟测量铜球每次下滑的时间,研究它们之间的关系。亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离,因为存在恒定的重力加速度。

9.卢瑟福发现核子实验

1911年卢瑟福还在曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。但是他和他的助手发现向金箔发射带正电的阿尔法微粒时有少量被弹回,这使他们非常吃惊。卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作核子,电子在它周围环绕。

10.米歇尔·傅科钟摆实验

去年,科学家们在南极安置一个摆钟,并观察它的摆动。他们是在重复1851年巴黎的一个著名实验。1851年法国科学家傅科在公众面前做了一个实验,用一根长220英尺的钢丝将一个62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它前后摆动的轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实际上这是因为房屋在缓缓移动。傅科的演示说明地球是在围绕地轴自转的。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 物理实验
    +关注

    关注

    0

    文章

    12

    浏览量

    6965
收藏 人收藏

    评论

    相关推荐

    2024年诺贝尔物理学奖为何要颁给机器学习?

    电子发烧友网报道(文/黄山明)近日,据新华社报道,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德(John Hopfield)和英国裔加拿大科学家杰弗里·
    的头像 发表于 10-10 00:11 3791次阅读

    FlexDDS NG多通道相位连续相干捷变射频源技术资料V1

    盛铂科技FlexDDS-NG是一种单台机箱最多可达12个通道相位连续直接数字信号合成器 (DDS)。其输出频率可达400MHz,该产品专为量子光学研究而设计, 是直接满足实验物理学家需求的下一代波形发生器。
    发表于 12-24 13:32 0次下载

    无所不能的MATLAB|证明曲速引擎的物理学原理

    幻想小说中随处可见,但这“科学”部分却始终无法实现。 据《大众机械》报道,“研究人员一直对曲速引擎的概念很感兴趣,这一概念由墨西哥物理学家明戈·阿尔库贝利于 1994 年首次提出。”“根据理论上的阿尔库贝利曲速引擎概念,航天器可以通过收缩前方空间和膨胀后方空间来实现超光速
    的头像 发表于 12-04 09:50 218次阅读
    无所不能的MATLAB|证明曲速引擎的<b class='flag-5'>物理学</b>原理

    FlexDDS-NG直接数字信号合成器(DDS)/波形发生器

    盛铂科技FlexDDS-NG是一种单台机箱最多可达12个通道相位连续直接数字信号合成器 (DDS)。其输出频率可达400MHz,该产品专为量子光学研究而设计, 是直接满足实验物理学家需求的下一代波形发生器。
    的头像 发表于 11-28 15:00 196次阅读

    欧姆定律的实际应用实例

    欧姆定律是电气工程和物理学中的一个基本定律,它描述了电流、电压和电阻之间的关系。这个定律由德国物理学家乔治·西蒙·欧姆在1827年首次提出,其公式为 V = IR,其中 V 代表电压(伏特),I
    的头像 发表于 10-28 15:27 1151次阅读

    文氏桥振荡器的原理和应用

    文氏桥振荡器(Wien Bridge Oscillator),又称文氏电桥振荡电路或RC桥式正弦波振荡器,是一种基于RC串并联网络实现的振荡电路,由德国物理学家Max Wien在1891年发明。这种振荡器在电子通信、信号处理、科学实验以及众多电子设备中都有广泛的应用。
    的头像 发表于 07-30 18:06 3039次阅读

    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    电润湿(electrowetting)现象于1875年由法国物理学家Lippmann提出,作为现有最成熟的液滴电操控方法,已成功应用于数字微流控、传热强化、淡水收集等领域。
    的头像 发表于 04-19 18:24 1827次阅读
    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    了解几位发明天线的先驱

    1864年左右,苏格兰物理学家詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)提出了无线电理论。
    发表于 03-28 13:54 920次阅读
    了解几位发明天线的先驱

    ATA-2168高压放大器用途有哪些方面

    中的关键作用。 一、科学研究 1.1物理学实验 高压放大器在物理学实验中扮演着关键的角色。例如,在核物理
    的头像 发表于 03-14 11:44 412次阅读
    ATA-2168高压放大器用途有哪些方面

    什么是超快激光?超快激光的应用有哪些呢?

    激光的原理早在 1916 年已经由著名物理学家爱因斯坦(Albert Einstein)的受激辐射理论所预言。
    的头像 发表于 03-11 14:36 1771次阅读
    什么是超快激光?超快激光的应用有哪些呢?

    电容单位为什么叫法拉?电容器是如何装电、放电的?

    电容单位为什么叫法拉?电容器是如何装电、放电的? 电容单位法拉的由来 电容单位法拉是以英国物理学家迈克尔·法拉第的名字而命名的。法拉第是19世纪最重要的物理学家之一,他对电磁学的研究做出了重大贡献
    的头像 发表于 02-02 10:08 2505次阅读

    简单介绍电流的单位:安培,安培

    物理学家认为电流从相对正的点流向相对的负点;这称为常规电流或富兰克林电流。
    的头像 发表于 01-30 11:00 3221次阅读

    量子半导体实现拓扑趋肤效应可用于制造微型高精度传感器和放大器

    德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。
    的头像 发表于 01-24 09:48 589次阅读

    拓扑量子器件的突破性进展

    1月18日,德累斯顿和维尔茨堡的量子物理学家们取得了显著的科技突破。他们研发出一种半导体器件,其卓越的鲁棒性和敏感度得益于一种量子现象——拓扑保护作用,能够免受外部干扰,实现前所未有的精准测量功能。
    的头像 发表于 01-23 14:59 600次阅读
    拓扑量子器件的突破性进展

    差示扫描量热仪 紫薯抗性淀粉的制备工艺及物理学特性研究

    温度、比热容及热焓等。紫薯抗性淀粉的制备工艺及物理学特性研究【(1、吉林省农业科学院农产品加工研究所2、吉林农业大学食品科学与工程学院,马林元;李璐;孙洪蕊;刘香英
    的头像 发表于 01-23 10:31 277次阅读
    差示扫描量热仪 紫薯抗性淀粉的制备工艺及<b class='flag-5'>物理学</b>特性研究