0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习笔记3:手动搭建深度神经网络(DNN)

人工智能实训营 2018-08-09 18:53 次阅读

在笔记 1 和 2 里笔者使用 numpy 手动搭建了感知机单元与一个单隐层的神经网络,理解了神经网络的基本架构和传播原理,掌握了如何从零开始手写一个神经网络。但以上仅是神经网络和深度学习的基础内容,深度学习的一大特征就在于隐藏层之深。因而,我们就这前面的思路,继续利用 numpy 工具,手动搭建一个 DNN 深度神经网络。

再次回顾一下之前我们在搭建神经网络时所秉持的思路和步骤:

  • 定义网络结构

  • 初始化模型参数

  • 循环计算:前向传播/计算当前损失/反向传播/权值更新

神经网络的计算流程

初始化模型参数

对于一个包含L层的隐藏层深度神经网络,我们在初始化其模型参数的时候需要更灵活一点。我们可以将网络结构作为参数传入初始化函数里面:

def initialize_parameters_deep(layer_dims):
  np.random.seed(3)
  parameters = {}  
# number of layers in the network L = len(layer_dims) for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])*0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
return parameters

以上代码中,我们将参数 layer_dims 定义为一个包含网络各层维数的 list ,使用随机数和归零操作来初始化权重 W 和偏置 b

比如说我们指定一个输入层大小为 5 ,隐藏层大小为 4 ,输出层大小为 3 的神经网络,调用上述参数初始化函数效果如下:

parameters=initialize_parameters_deep([5,4,3])
print("W1="+str(parameters["W1"]))
print("b1="+str(parameters["b1"]))
print("W2="+str(parameters["W2"]))
print("b2="+str(parameters["b2"]))
W1 = [[ 0.01788628 0.0043651  0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] 
b1 = [[0.] [0.] [0.] [0.]]
W2 = [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]]
b2 = [[0.] [0.] [0.]]
前向传播

前向传播的基本过程就是执行加权线性计算和对线性计算的结果进行激活函数处理的过程。除了此前常用的 sigmoid 激活函数,这里我们引入另一种激活函数 ReLU ,那么这个 ReLU 又是个什么样的激活函数呢?

640?wx_fmt=png

ReLU


ReLU 全称为线性修正单元,其函数形式表示为 y = max(0, x).
从统计学本质上讲,
ReLU 其实是一种断线回归函数,其主要功能在于能在计算反向传播时缓解梯度消失的情形。相对书面一点就是,ReLU 具有稀疏激活性的优点。关于ReLU的更多细节,这里暂且按下不表,我们继续定义深度神经网络的前向计算函数:

def linear_activation_forward(A_prev, W, b, activation):
  if activation == "sigmoid":
    Z, linear_cache = linear_forward(A_prev, W, b)
    A, activation_cache = sigmoid(Z)  
elif activation == "relu": Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = relu(Z)

assert (A.shape == (W.shape[0], A_prev.shape[1])) cache = (linear_cache, activation_cache)
return A, cache

在上述代码中, 参数 A_prev 为前一步执行前向计算的结果,中间使用了一个激活函数判断,对两种不同激活函数下的结果分别进行了讨论。

对于一个包含L层采用 ReLU 作为激活函数,最后一层采用 sigmoid 激活函数,前向计算流程如下图所示。


定义L层神经网络的前向计算函数为:

def L_model_forward(X, parameters):
  caches = []
  A = X  
# number of layers in the neural network L = len(parameters) // 2 # Implement [LINEAR -> RELU]*(L-1) for l in range(1, L): A_prev = A A, cache = linear_activation_forward(A_prev, parameters["W"+str(l)], parameters["b"+str(l)], "relu") caches.append(cache)
# Implement LINEAR -> SIGMOID AL, cache = linear_activation_forward(A, parameters["W"+str(L)], parameters["b"+str(L)], "sigmoid") caches.append(cache)

assert(AL.shape == (1,X.shape[1]))
return AL, caches
计算当前损失

有了前向传播的计算结果之后,就可以根据结果值计算当前的损失大小。定义计算损失函数为:

def compute_cost(AL, Y):
  m = Y.shape[1]  
# Compute loss from aL and y. cost = -np.sum(np.multiply(Y,np.log(AL))+np.multiply(1-Y,np.log(1-AL)))/m cost = np.squeeze(cost)
assert(cost.shape == ())
return cost
执行反向传播

执行反向传播的关键在于正确的写出关于权重 W 和 偏置b 的链式求导公式,对于第 l层而言,其线性计算可表示为:

响应的第l层的Wb 的梯度计算如下:

640?wx_fmt=png


由上分析我们可定义线性反向传播函数和线性激活反向传播函数如下:

def linear_backward(dZ, cache):
  A_prev, W, b = cache
  m = A_prev.shape[1]

  dW = np.dot(dZ, A_prev.T)/m
  db = np.sum(dZ, axis=1, keepdims=True)/m
  dA_prev = np.dot(W.T, dZ)  

assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)

return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
  linear_cache, activation_cache = cache  
if activation == "relu": dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid": dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db

根据以上两个反向传播函数,我们可继续定义L层网络的反向传播函数:

def L_model_backward(AL, Y, caches):
  grads = {}
  L = len(caches) 
# the number of layers m = AL.shape[1] Y = Y.reshape(AL.shape)
# after this line, Y is the same shape as AL # Initializing the backpropagation dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
# Lth layer (SIGMOID -> LINEAR) gradients current_cache = caches[L-1] grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")
for l in reversed(range(L - 1)): current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu") grads["dA" + str(l + 1)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp
return grads

反向传播涉及大量的复合函数求导计算,所以这一块需要一定的微积分基础。这也是为什么数学是深度学习人工智能的基石所在。

权值更新

反向传播计算完成后,即可根据反向计算结果对权值参数进行更新,定义参数更新函数如下:

def update_parameters(parameters, grads, learning_rate):
# number of layers in the neural network L = len(parameters) // 2 # Update rule for each parameter. Use a for loop. for l in range(L): parameters["W" + str(l+1)] = parameters["W"+str(l+1)] - learning_rate*grads["dW"+str(l+1)] parameters["b" + str(l+1)] = parameters["b"+str(l+1)] - learning_rate*grads["db"+str(l+1)] return parameters
封装搭建过程

到此一个包含$$层隐藏层的深度神经网络就搭建好了。当然了,跟前面保持统一,也需要 pythonic 的精神,我们继续对全过程的各个函数进行统一封装,定义一个封装函数:

def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
  np.random.seed(1)
  costs = []  

  # Parameters initialization.
  parameters = initialize_parameters_deep(layers_dims)  
# Loop (gradient descent) for i in range(0, num_iterations):
# Forward propagation: # [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID AL, caches = L_model_forward(X, parameters)
# Compute cost. cost = compute_cost(AL, Y)
# Backward propagation. grads = L_model_backward(AL, Y, caches)
# Update parameters. parameters = update_parameters(parameters, grads, learning_rate)
# Print the cost every 100 training example if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost)) if print_cost and i % 100 == 0: costs.append(cost)
# plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show()

return parameters

这样一个深度神经网络计算完整的搭建完毕了。从两层网络推到$$层网络从原理上是一样的,几个难点在于激活函数的选择和处理、反向传播中的多层复杂链式求导等。多推导原理,多动手实践,相信你会自己搭建深度神经网络。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4774

    浏览量

    100891
  • 人工智能
    +关注

    关注

    1792

    文章

    47422

    浏览量

    238943
  • 机器学习
    +关注

    关注

    66

    文章

    8425

    浏览量

    132769
收藏 人收藏

    评论

    相关推荐

    深度学习中的卷积神经网络模型

    深度学习近年来在多个领域取得了显著的进展,尤其是在图像识别、语音识别和自然语言处理等方面。卷积神经网络作为深度学习的一个分支,因其在图像处理
    的头像 发表于 11-15 14:52 365次阅读

    FPGA在深度神经网络中的应用

    随着人工智能技术的飞速发展,深度神经网络(Deep Neural Network, DNN)作为其核心算法之一,在图像识别、语音识别、自然语言处理等领域取得了显著成果。然而,传统的深度
    的头像 发表于 07-24 10:42 727次阅读

    深度神经网络在雷达系统中的应用

    深度神经网络(Deep Neural Networks,DNN)在雷达系统中的应用近年来取得了显著进展,为雷达信号处理、目标检测、跟踪以及识别等领域带来了革命性的变化。以下将详细探讨深度
    的头像 发表于 07-15 11:09 766次阅读

    残差网络深度神经网络

    残差网络(Residual Network,通常简称为ResNet) 是深度神经网络的一种 ,其独特的结构设计在解决深层网络训练中的梯度消失和梯度爆炸问题上取得了显著的突破,并因此成为
    的头像 发表于 07-11 18:13 1123次阅读

    简单认识深度神经网络

    深度神经网络(Deep Neural Networks, DNNs)作为机器学习领域中的一种重要技术,特别是在深度学习领域,已经取得了显著的
    的头像 发表于 07-10 18:23 1053次阅读

    深度神经网络(DNN)架构解析与优化策略

    深度神经网络(Deep Neural Network, DNN)作为机器学习领域中的一种重要技术,以其强大的特征学习能力和非线性建模能力,在
    的头像 发表于 07-09 11:00 1990次阅读

    深度神经网络概述及其应用

    深度神经网络(Deep Neural Networks, DNNs)作为机器学习的一种复杂形式,是广义人工神经网络(Artificial Neural Networks, ANNs)的
    的头像 发表于 07-04 16:08 1359次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需
    的头像 发表于 07-04 13:20 971次阅读

    深度神经网络的设计方法

    深度神经网络(Deep Neural Networks, DNNs)作为人工智能领域的重要技术之一,通过模拟人脑神经元之间的连接,实现了对复杂数据的自主学习和智能判断。其设计方法不仅涉
    的头像 发表于 07-04 13:13 492次阅读

    BP神经网络属于DNN

    属于。BP神经网络(Backpropagation Neural Network)是一种基于误差反向传播算法的多层前馈神经网络,是深度学习(Deep Learning)领域中非常重要的
    的头像 发表于 07-03 10:18 805次阅读

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识别、语音识别
    的头像 发表于 07-02 18:19 931次阅读

    深度神经网络模型cnn的基本概念、结构及原理

    深度神经网络模型CNN(Convolutional Neural Network)是一种广泛应用于图像识别、视频分析和自然语言处理等领域的深度学习模型。 引言
    的头像 发表于 07-02 10:11 9782次阅读

    深度神经网络模型有哪些

    、Sigmoid或Tanh。 卷积神经网络(Convolutional Neural Networks,CNN): 卷积神经网络深度学习中最重
    的头像 发表于 07-02 10:00 1514次阅读

    利用深度循环神经网络对心电图降噪

    一个是它们由堆叠在一起的多个 (> 2) 层组成 - 这 种方法也称为深度学习。这种深层架构虽然比典型 的\"浅层\"神经网络需要更多的计算能力,但事实证明,它们在各种
    发表于 05-15 14:42

    详解深度学习神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线
    的头像 发表于 01-11 10:51 2212次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用