0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于傅里叶变换变换?

0BFC_eet_china 来源:未知 作者:李倩 2018-08-13 08:51 次阅读

关于傅里叶变换变换?

答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。——参考郑君里的《信号与系统》。

2、什么是Laplace变换?答:

(1)求解方程得到简化。且初始条件自动包含在变换式里。

(2)拉氏变换将“微分”变换成“乘法”,“积分”变换成“除法”。即将微分方程变成代数方程。拉氏变换将时域中卷积运算变换成“乘法”运算。

(3)利用系统函数零点、极点分布分析系统的规律。

在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。

现在给你举个例子:我们学控制的时候,比如一个二阶电路RLC系统微分方程是:LC*Uc''+RC*Uc'+Uc=U设想你借这个微分方程多费劲,那么你用laplace变换,微分方程变为LC*s^2*Uc+RCs*Uc+Uc=U然后Uc=U/(LCs^2+RCs+1)然后可以查表直接得出结果(就跟查积分表一样方便),这不比你解微分方程,强多了么!

(第2种说法)拉普拉斯变换提供了一种变换定义域的方法,把定义在时域上的信号(函数)映射到复频域上(要理解这句话,需要了解一下函数空间的概念--我们知道,函数定义了一种“从一个集合的元素到另一个集合的元素”的关系,而两个或以上的函数组合成的集合,就是函数空间,即函数空间也是一个集合;拉普拉斯变换的“定义域”,就是函数空间,可以说,拉普拉斯变换就是一种处理函数的函数。由于拉普拉斯变换定义得相当巧妙,所以它就具有一些奇特的特质),而且,这是一种一一对应的关系(只要给定复频域的收敛域),故只要给定一个时域函数(信号),它就能通过拉普拉斯变换变换到一个复频域信号(不管这个信号是实信号还是复信号),因而,只要我们对这个复频域信号进行处理,也就相当于对时域信号进行处理(例如设f(t)←→F(s),Re[s]>a,则若我们对F(s)进行时延处理,得到信号F(s-z),Re[s]>a+Re[z],那么就相当于我们给时域函数乘以一个旋转因子e^zt,即f(t)e^zt←→F(s-z),Re[s]>a+Re[z];只要对F(s-z)进行反变换,就可以得到f(t)e^zt)。

拉普拉斯变换被用于求解微分方程,主要是应用拉普拉斯变换的几个性质,使求解微分方程转变为求解代数方程(因为求解代数方程总比求解微分方程容易得多!而且,(可以很方便地)对求解结果进行拉普拉斯反变换从而得到原微分方程的解)。

我们总可以容易地画出实变函数的图像(绝大多数函数的确如此),但我们难以画出一个复变函数的图象,这也许是拉普拉斯变换比较抽象的原因之一;而另外一个原因,就是拉普拉斯变换中的复频率s没有明确的物理意义。关于特征根和复数,建议提问者再去看看书中的定义,应该不难理解。3、什么是z变换?

4、什么是FFT(快速fourier变换)?答:音频处理里面常用。就是把波形(时域信号)变换到频域,使得用户更好的分析。频域就是类似于“千千静听”的频谱。这个过程叫“离散傅立叶变换”(DFT)。而FFT是DFT的一种高效快速算法。快速傅立叶变换算法的原理是(来自百度百科):快速傅氏变换(FFT)是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,

一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2(N/2)2=N+N2/2。继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 信号
    +关注

    关注

    11

    文章

    2778

    浏览量

    76603
  • 函数
    +关注

    关注

    3

    文章

    4303

    浏览量

    62411
  • 傅里叶变换
    +关注

    关注

    6

    文章

    437

    浏览量

    42562

原文标题:傅里叶变换、拉氏变换、z变换的含义

文章出处:【微信号:eet-china,微信公众号:电子工程专辑】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    傅里叶变换是什么?如何求傅里叶变换

    傅里叶变换是什么?三傅里叶变换的意义是什么?如何求傅里叶变换
    发表于 05-08 09:23

    DSP变换运算-傅里叶变换

    第24章 DSP变换运算-傅里叶变换本章节开始进入此教程最重要的知识点之一傅里叶变换关于傅里叶变换,本章主要是把傅里叶相关的基础知识进行必
    发表于 08-03 06:14

    什么是傅里叶变换

    什么是傅里叶变换 傅里叶变换(Transformée de Fourier)是一种积分变换。 因其基本思想首先
    发表于 11-29 12:46 9490次阅读
    什么是<b class='flag-5'>傅里叶变换</b>

    有限长离散变换-离散傅里叶变换

    离散傅里叶变换是一种在时域和频域均离散的傅里叶变换.
    发表于 02-23 09:30 49次下载
    有限长离散<b class='flag-5'>变换</b>-离散<b class='flag-5'>傅里叶变换</b>

    STFT短时傅里叶变换

    关于短时傅里叶变换的原理及其在通信的应用。
    发表于 05-17 16:41 5次下载

    傅里叶变换、拉氏变换、z变换详细剖析

    关于傅里叶变换变换?答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace
    的头像 发表于 12-25 17:06 3.4w次阅读
    对<b class='flag-5'>傅里叶变换</b>、拉氏<b class='flag-5'>变换</b>、z<b class='flag-5'>变换</b>详细剖析

    小波变换傅里叶变换好在哪里_小波变换傅里叶变换详解

    小波变换傅里叶变换有什么区别吗?小波变换傅里叶变换哪个好?我们通过小波变换傅里叶变换的详细
    发表于 01-13 11:02 1.6w次阅读
    小波<b class='flag-5'>变换</b>比<b class='flag-5'>傅里叶变换</b>好在哪里_小波<b class='flag-5'>变换</b>与<b class='flag-5'>傅里叶变换</b>详解

    详解傅里叶变换与小波变换

    详细讲述傅里叶变换和小波变换原理
    发表于 01-16 14:34 9次下载

    傅里叶变换基本性质 傅里叶变换本质 傅里叶变换的应用

    傅里叶变换基本性质 傅里叶变换本质 傅里叶变换的应用 傅里叶变换是现代数学、物理学、工程学等领域中非常重要的一种数学工具和基本理论。在信号处理、图像处理、通信技术、音乐分析、光学、医学
    的头像 发表于 09-07 16:18 6459次阅读

    傅里叶变换的本质及物理意义 常用傅里叶变换性质

    傅里叶变换的本质及物理意义 常用傅里叶变换性质 傅里叶变换是一种重要的数学工具,通过将一个复杂的函数表示为一系列简单的正弦余弦函数之和,可以在许多领域应用,包括信号处理、图像处理、物理学等。在本文
    的头像 发表于 09-07 16:30 3960次阅读

    傅里叶变换和反变换公式

    傅里叶变换和反变换公式  傅里叶变换和反变换在信号处理领域中被广泛应用。傅里叶变换是将一个时域信号转换为频域信号的过程,而傅里叶反
    的头像 发表于 09-07 16:53 1.6w次阅读

    傅里叶变换和离散傅里叶变换的关系

    傅里叶变换和离散傅里叶变换的关系 傅里叶变换(Fourier Transform)是一种将时间域(或空间域)的信号转换为频率域(或波数域)的信号的数学工具。而离散傅里叶变换(Discr
    的头像 发表于 09-07 17:04 2493次阅读

    傅里叶变换的定义 傅里叶变换的意义

    傅里叶变换的定义 傅里叶变换的意义  傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。 在不同的研究领域,傅里叶变换具有多种不同
    的头像 发表于 11-30 15:32 1931次阅读

    什么是傅里叶变换和逆变换?为什么要用傅里叶变换?

    傅里叶变换和逆变换是一对数学变换,用于分析信号和数据的频域特征。傅里叶变换将一个信号或函数从时间域转换到频域,而逆变换则将
    的头像 发表于 01-11 17:19 3621次阅读

    经典傅里叶变换与快速傅里叶变换的区别

    经典傅里叶变换与快速傅里叶变换(FFT)在多个方面存在显著的区别,以下是对这两者的比较: 一、定义与基本原理 经典傅里叶变换 : 是一种将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数
    的头像 发表于 11-14 09:37 124次阅读