0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SCARA机器人处于直线运动状态的算法求解研究

电子设计 来源:郭婷 作者:电子设计 2019-05-07 08:22 次阅读

1. 引 言

SCARA机器人是一种四轴机械手,SCARA(Selective Compliance Assembly Robot Arm,中文译名:选择顺应性装配机器手臂)是一种圆柱坐标型的特殊类型的工业机器人。 SCARA系统在x,y方向上具有顺从性,而在Z轴方向具有良好的刚度,此特性特别适合于装配工作,例如将一个圆头针插入一个圆孔,故SCARA系统首先大量用于装配印刷电路板和电子零部件;SCARA的另一个特点是其串接的两杆结构,类似人的手臂,可以伸进有限空间中作业然后收回,适合于搬动和取放物件,如集成电路板等。 它的第一、二、四轴具有转动特性,而第三轴具有线性移动特性,故其工作空间类似于一个扇形柱体区域。SCARA机器人还广泛应用于塑料工业、汽车工业、电子产品工业、药品工业和食品工业等领域

SCARA机器人是专门为工业要求而开发的机器人系统,适合在平面范围内实现对物体的快速取放或者装配等。控制系统硬件平台采用四轴运动控制器与交流伺服驱动系统,结构紧凑,可靠性高 谐波减速传动 控制系统软件平台采用OpenRob-I工业机器人平台软件,机器人语言编程系统全面开放,提供源代码,方便应用软件的二次开发,用户可根据需要进行机器人专用系统的开发 工业标准设计,可同时兼顾教学和实训当SCARA机器人在流水线上进行往复运动时,其末端点经常会处于直线运动状态。由于末端位置与工作空间会随实际工况的要求而发生变化,预先确定末端在直线运动下的极限点坐标,并提前设定软件限位,对于防止过度驱动或错误操作下的机器人碰撞与损坏。

2. 算法设计

假定SCARA机器人的基座安装在水平面内,依照从基座到末端的顺序,将其四个轴分别命名为X、Y、Z、R轴,且将R轴末端视为一个点(设为End),若在R轴末端安装夹具,则将夹具末端也视为一个点(设为Tip)。

2.1 前提条件

本算法的实现基于如下三个客观前提条件:

(1) 由于Z轴仅在竖直平面内做上下运动,并不会影响End点的水平面投影位置。而在不安装夹具的情况下,R轴的旋转运动也不会对此产生影响;再者,由于夹具没有附带对应的驱动装置,即使安装夹具也仅相当于将End点的水平面投影点在二维空间内相对平移了一个固定的矢量位置,扩展了一定的工作空间范围,所以,Z轴和R轴的运动都不会影响到末端点的水平面投影位置。

(2) 由于SCARA机器人的工作空间是一个类似于扇形的柱体区域,将其投影在水平面上并不会使工作空间的边界发生改变。所以,End点的直线运动是否超出工作空间的范围仅与X、Y两轴的运动有关。

(3) 由于End点(或Tip点)在水平面二维空间下的直线运动有无穷多种可能的方向,而每种方向均与x-y直角坐标轴成一定角度,经旋转变换后都能归结到与坐标轴平行的方向上。所以,本算法只针对分别平行于x-y直角坐标轴的两种直线运动求解四个极限点坐标即可,其余运动方向上的极限点坐标可参照本算法旋转相应角度后求解。

2.2 设计过程

设基座位于x-y直角坐标系的原点O,SCARA机器人的大、小臂均完全展开时的姿态与x轴正向重合,为初始状态,规定两臂旋转的方向均取逆时针为正,顺时针为负,据此建立几何学模型。先由四条平面圆弧(设为C1~C4)确定水平面工作空间,同时给定末端当前点(设为Now)的坐标;再过点Now分别作两条坐标轴的平行线(设平行于x轴的直线为Line_H、平行于y轴的直线为Line_V),与边界圆弧相交;然后分别求出Line_H、Line_V与C1~C4的8个交点,若无交点则默认交点坐标为点Now的坐标值;接着判断交点中的有效点;最后确定出四个极限点(设为P1~P4)的位置坐标即为所求。

2.3 交点判定

从上述设计过程可知,所求的左、右极限点必然在Line_H与圆弧边界的交点之中,而上、下极限点必然在Line_V与圆弧边界的交点之中。点a称为集合E的极限点,如果a的任意邻域都与E有交集。因为SCARA机器人在做直线运动时不会更换手系,所以可将左、右手系分开考虑。

在右手系下,圆弧C1~C4依次首尾相连围成一个封闭区域,如图1所示。其中,C1弧为小臂处于正向最大姿态且大臂自由运动时End点的轨迹,C2弧为小臂始终处于大臂的延长线上且大臂自由运动时End点的轨迹,C3弧为大臂处于正向最大姿态且小臂自由运动时End点的轨迹,C4弧为大臂处于负向最小姿态且小臂自由运动时End点的轨迹。Now点位于这个封闭区域内,P1~P4点的判定遵循如下原则:(1) P1、P2、P3、P4分别位于Now点的左、右、下、上方;(2) 各极限点在各自方位上均与Now点的直线距离最短;(3) 线段P1P2、P3P4均不穿过C1弧与坐标原点O围成的工作死区。

左手系与右手系类似,不再敖述。

3. 仿真与实现

本文采用MATLAB仿真与VC实现相对应验证的方式对算法加以说明。MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

3.1 MATLAB仿真

3.1.1 右手系

SCARA机器人处于直线运动状态的算法求解研究

设最大工作空间取值范围如下:X轴为 ,Y轴为 ,当前末端点位置坐标为 ,最终所求的右手系下的4个极限点P1、P2、P3、P4的直角坐标值为(如图2所示):

SCARA机器人处于直线运动状态的算法求解研究

3.1.2 左手系

左手系下的实现过程与右手系类似,如图3、图4所示。不同的只是Y轴的工作空间取值范围为 ,当前末端点位置坐标仍然取为 ,最终所求的左手系下的4个极限点P1、P2、P3、P4的直角坐标值为(如图4所示):

SCARA机器人处于直线运动状态的算法求解研究

图3 左手系下的工作空间与当前点

SCARA机器人处于直线运动状态的算法求解研究

图4 左手系下的极限点求解

需要说明的是,上述仿真示例只是给出了最大工作空间,在该工作空间内可选取任意子空间及包含其中的当前末端点进行仿真,仿真结果均表明,本算法能正确计算并确定SCARA机器人末端直线运动下的四个极限点坐标。

3.2 VC实现

采用VC开发软件封装功能函数,实现本算法。右、左手系下的界面分别如图5、图6所示。选取与上节MATLAB仿真示例中相同的工作空间与末端当前位置坐标等参数,求解出的四个极限点坐标与MATLAB结果完全对应相同。

3.2.1 右手系

SCARA机器人处于直线运动状态的算法求解研究

3.2.2 左手系

SCARA机器人处于直线运动状态的算法求解研究

图6 左手系下的算法实现

4. 结 论

本文提出了一种SCARA机器人直线运动极限点的求解算法,并通过MATLAB仿真与VC实现进行了对应验证。该算法能有效预测并解决实际操作中的安全问题,具有较强的实用价值。SCARA机器人)是应用最广泛的一种装配机器人。本文设计的SCARA机器人既可以用于实际生产又可以用于教学实验和科学研究。所以开发SCARA机器人具有广泛的实际意义和应用前景。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • matlab
    +关注

    关注

    182

    文章

    2963

    浏览量

    230170
  • 控制系统
    +关注

    关注

    41

    文章

    6546

    浏览量

    110485
  • 机器人
    +关注

    关注

    210

    文章

    28210

    浏览量

    206543
收藏 人收藏

    评论

    相关推荐

    LabVIEW的六轴工业机器人运动控制系统

    。 系统研究算法开发:首先,项目围绕机器人的数学模型,特别是空间位姿描述和D-H模型展开研究。在此基础上,开发了机器人
    发表于 12-21 20:03

    移动机器人运动控制系统设计及控制算法研究

    移动机器人运动控制系统设计及控制算法研究
    发表于 08-20 15:54

    机器人足球识别算法研究

    `机器人足球识别算法研究`
    发表于 08-20 19:59

    先进机器人控制

    运动学部分从坐标变换人手,介绍了正向运动学方程的建立、逆向运动学的求解以及机器人的微分运动等内
    发表于 09-19 15:30

    单轴与多轴机器人的优缺点PK(深度总结)

    机器人,各占了市场很大的比率。一、单轴机器人在国内又被称为直线模组,直线运动模组,线性运动模组,电动滑台等,是一种能提供
    发表于 11-23 10:17

    基于CAN总线和双传感器仿人机器人运动控制系统的研究

    一。引言  机器人研究是自动化领域最复杂。最具挑战性的课题,它集机械。电子。计算机。材料。传感器。控制技术等多门学科于一体,是多学科高技术成果的集中体现。而仿步行机器人技术的
    发表于 08-19 06:57

    scara机器人运动学反解,各位大佬求救吖

    1、fsolve/solve 求解scara机器人运动学反解:在机器人可达空间内自己给出一个直线
    发表于 06-29 22:29

    SCARA工业机器人相关资料推荐

    ZNL-406SCARA工业机器人一、概述ZNL-406SCARA工业机器人可以在高速运行时承担较高负载,非常适用于需要更大工作范围或更高有效负载同时拥高速度、低价格的应用。
    发表于 07-01 09:49

    全向轮机器人是怎样进行直线运动的?

    直线运动:以图 2.2(b)为例,需要控制三个全向轮同时按照一定速度运动。这里只定性分析关系,从图 2.1可以看出,由电机驱动全向轮转动产生的速度总是沿着轮毂径向(即圆ABC的切线方向),只是最终实际合成的运动速度会因为速度叠加
    发表于 08-30 06:02

    全向轮机器人是如何进行直线运动的?

    全向轮机器人是如何进行直线运动的?
    发表于 10-29 07:09

    大族机器人-SCARA

    大族机器人-SCARA
    发表于 12-25 22:20 0次下载

    S4C IRB机器人基本操作

    MOTION TYPE:选择操作机器人的方式是沿TCP旋转还是线性移动TCP,手动状态下,直线运动与姿态运动切换。直线运动
    发表于 10-16 14:58 6次下载
    S4C IRB<b class='flag-5'>机器人</b>基本操作

    直线电机是如何做到直线运动的呢?

    直线电机是一种能产生直线运动的电机。直线电机把电能转换成直线运动的机械能,不需要任何中间传动转换装置,因此比旋转电机经过转换装置形成的直线运动
    发表于 10-07 14:22 1094次阅读
    <b class='flag-5'>直线</b>电机是如何做到<b class='flag-5'>直线运动</b>的呢?

    ABB工业机器人运动指令有哪几个

    用于控制机器人运动轨迹、速度和加速度等参数,以实现精确的定位和操作。运动指令的种类繁多,可以根据不同的应用场景和需求进行选择。 基本运动指令 2.1
    的头像 发表于 06-16 16:15 2148次阅读

    abb工业机器人运动模式有哪些

    ABB工业机器人运动模式是其在自动化生产线上执行任务的关键因素之一。本文将详细介绍ABB工业机器人的多种运动模式,以及它们在实际应用中的优势和局限性。 一、基本
    的头像 发表于 06-17 09:09 2324次阅读