0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习解决方案如何极速进行脑部MRI图像对比?

NVIDIA英伟达企业解决方案 来源:未知 作者:工程师郭婷 2018-08-28 14:08 次阅读

为了衡量手术是否成功,脑外科医生通常会对比术前和术后的MRI扫描图,以确定肿瘤是否被成功切除。由于对比过程非常耗时,如果在手术进行中做MRI扫描,医生将不得不通过肉眼对比扫描图的差异。但其实大脑在手术期间已经发生了变化,这样一来,扫描图对比起来则更加困难。

更快速的MRI扫描图对比方法可以帮助医生更好地治疗脑瘤。为此,麻省理工学院的研究人员开发出了一种深度学习解决方案,可以在一秒钟内对脑部MRI扫描图进行对比。

该方案可以帮助外科医生在手术期间对比术中MRI图像,从而近乎实时地判断手术是否成功。此外,肿瘤学家也可以利用这种方法对比患者数月前或数年前的MRI扫描图,以快速分析肿瘤治疗方案的效果。

像素极速对齐

如果要对比两张MRI扫描图,机器学习算法需要将原3D扫描图的像素与另一张扫描图中对应位置的像素进行逐一比较。这项工作并不轻松,使用目前最先进的算法也需要两个小时才能对齐脑部扫描图的像素。

这个过程太过漫长,所以对于正在进行的手术来说,并不具有实用意义。此外,如果需要分析成千上万张的扫描图,这种速度也是不切实际的。

“对于图像中的每个像素,传统算法都需要在另一张图像中找到与之对应的大概位置。两者的解剖结构在对应的位置也是相同的。这些算法要进行多次迭代。” 该研究主要研究员、麻省理工学院博士后Guha Balakrishnan说道。

使用神经网络则可以加速这个过程,因为其中增加了学习功能。研究人员开发的无监督式算法名为VoxelMorph,可以学习未被标记的MRI扫描图对,快速识别出大脑结构和功能区,并匹配图像。他们使用了NVIDIA GPU进行推理,对齐一组扫描图的像素只需要一秒钟的时间,而使用CPU时则需要一分钟之久。

研究人员在训练神经网络时使用了一种被称为“atlas-based registration”的方法,并利用了来自公共来源的含有大约7000张MRI扫描图的多样化数据集。该过程将每张训练图像与一张MRI参考扫描图(一张理想的或一般的图像,即“atlas”)进行对齐。

该团队目前正在与马萨诸塞州综合医院(Massachusetts General Hospital)合作,对其数据库中的数百万张扫描图进行回顾性研究。

“过去需要耗时两天才能完成的实验现在只需要几秒钟,”麻省理工学院博士后研究员、该研究合著者 Adrian Dalca 说道,“这为研究开启了一个崭新的世界,像素对齐技术只是其中的一小步。”

发掘更多应用潜力

研究人员正在努力完善深度学习模型的性能,让其能够处理含有噪点的低质量扫描图。这是在临床环境中运用扫描图像素对齐技术的关键。

研究数据集中包含的扫描图质量良好、画质清晰,但需要患者在MRI机器中等待很久才能获得。“但是,如果患者中风,就需要尽快扫描出图像, 这种情况下得到的扫描图的质量则完全不同。” Dalca 说道。

该团队将于今年秋季在医学影像分析领域顶级会议MICCAI上发表一篇新论文。同时,Balakrishnan正在开发一种针对目前算法的变体,该算法将使用半监督式学习,将少量标记数据与未标记的训练数据集相结合。他发现该模型可以将神经网络的准确度提高8%,使其性能高于传统的慢速算法。

Balakrishnan表示,除了脑部扫描外,这种像素对齐解决方案还可用于其他医学图像,如心脏和肺部CT扫描,甚至是噪点极多的超声波扫描。“我觉得在某种程度上,它的应用潜力是无限的。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 3D
    3D
    +关注

    关注

    9

    文章

    2921

    浏览量

    108148
  • 神经网络
    +关注

    关注

    42

    文章

    4785

    浏览量

    101284
  • 深度学习
    +关注

    关注

    73

    文章

    5521

    浏览量

    121672

原文标题:肿瘤跟踪:神经网络如何极速对比脑部MRI图像

文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    广和通正式推出AI玩具大模型解决方案

    ,即可实现音视频及图像的实时传输、语音识别、自然语言处理以及机器学习等多种功能。这意味着玩具能够与用户进行更加丰富的互动,通过拟人、拟动物或拟IP的形式,以视、听、触等多维度的方式与用户进行
    的头像 发表于 01-24 10:36 584次阅读

    广和通推出AI玩具大模型解决方案

    广和通推出AI玩具大模型解决方案,该方案深度融合豆包等AI大模型、内置广和通Cat.1模组,助力智能玩具实现AI化升级。该解决方案无需外接MCU,即可实现音视频及
    的头像 发表于 01-21 10:27 271次阅读

    百度深度学习专利申请量位列全球第一

    近日,全球领先的知识产权解决方案提供商Questel,发布全球深度学习专利全景报告。
    的头像 发表于 01-15 09:29 256次阅读

    《DNK210使用指南 -CanMV版 V1.0》第三十七章 image图像对比实验

    第三十七章 image图像对比实验 在上一章节中,介绍了image模块中图像色块追踪方法给的使用,本章将继续介绍image模块中图像对比方法
    发表于 11-07 09:33

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是
    的头像 发表于 10-27 11:13 550次阅读

    FPGA做深度学习能走多远?

    支持不同的数据精度、量化和激活函数等。这种灵活性使其能够适应各种深度学习任务,为不同的应用场景提供定制化的解决方案。 • 低功耗:FPGA 是可编程的,可以在设计中仅使用所需的计算资源,从而避免不必要
    发表于 09-27 20:53

    基于FPGA+GPU异构平台的遥感图像切片解决方案

    大型遥感图像分割成图像切片信息,以便更有效地处理和分析图像数据。中科亿海微自主研制的AI目标识别加速卡,基于FPGA+GPU异构并行计算处理架构设计,内嵌深度
    的头像 发表于 09-20 08:05 571次阅读
    基于FPGA+GPU异构平台的遥感<b class='flag-5'>图像</b>切片<b class='flag-5'>解决方案</b>

    医疗PACS影像数据的极速分布式块存储解决方案

    医疗PACS影像数据的极速分布式块存储解决方案
    的头像 发表于 08-23 10:13 438次阅读
    医疗PACS影像数据的<b class='flag-5'>极速</b>分布式块存储<b class='flag-5'>解决方案</b>

    利用Matlab函数实现深度学习算法

    在Matlab中实现深度学习算法是一个复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我将概述一个基本的流程,包括环境设置、数据准备、模型设计、训练过程、以及测试和评估,并提供一个基于Mat
    的头像 发表于 07-14 14:21 2497次阅读

    深度学习中反卷积的原理和应用

    深度学习的广阔领域中,反卷积(Deconvolution,也称作Transposed Convolution)作为一种重要的图像上采样技术,扮演着至关重要的角色。特别是在计算机视觉任务中,如
    的头像 发表于 07-14 10:22 2557次阅读

    深度学习中的时间序列分类方法

    的发展,基于深度学习的TSC方法逐渐展现出其强大的自动特征提取和分类能力。本文将从多个角度对深度学习在时间序列分类中的应用进行综述,探讨常用
    的头像 发表于 07-09 15:54 1238次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,深度
    的头像 发表于 07-09 10:50 1014次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN
    的头像 发表于 07-04 17:25 1113次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    学习框架,它们各自拥有独特的特点和优势。本文将从背景介绍、核心特性、操作步骤、性能对比以及选择指南等方面对TensorFlow和PyTorch进行详细比较,以帮助读者了解这两个框架的优缺点,并选择最适合自己需求的框架。
    的头像 发表于 07-02 14:04 1148次阅读

    深度学习与传统机器学习对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1585次阅读