0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通过计算机与神经网络分析太阳系的历史

NVIDIA英伟达企业解决方案 来源:未知 作者:工程师郭婷 2018-08-28 14:21 次阅读

数千年来,月球一直引人遐想,但关于它以及太阳系的历史,仍有数不清的问题悬而未决。有些答案就存在于月球表面坑坑洼洼的陨石坑中。通过深度学习,科学家能够比以往更清楚地看到这些陨石坑。

多伦多大学行星科学中心的博士后研究员、天体物理学家Mohamad Ali-Dib表示,可以将陨石坑研究看作“太阳系考古学”。

由于缺乏大气和地质活动,月球、水星和火星等天体的地形特征会在一段时间内保持相对不变。对于诸如此类天体中无空气环境的探索,研究陨石坑是一种特别有用的方法。

仔细观察这些陨石坑,就能发现有关陨石坑历史和太阳系演化的重要线索。但到目前为止,陨石坑是通过卫星图像或卫星测高数据的方式进行人工计数和测量的。

“研究生全天的工作是捕获水星、月球或火星的图像,然后手动去数每个陨石坑。这是一项极其辛苦的工作。” Ali-Dib说道。

他指出,人工计数存在一些问题。这将需要“一大批研究生和本科生”来完成这项繁重而艰巨的工作。这种方式是有缺陷的,因为每个助理研究员识别陨石坑的标准可能不同,而且当他们疲劳的时候准确率也会下降。

因此,Ali-Dib和多伦多大学的同事Ari Silburt以及其他组员,共同研发出了一个神经网络,可以在几个小时内识别出数千个以前未被发现的月球陨石坑。

聚焦月球

陨石坑的形状大小不一,有的大到足以容下一个州,而有的小到直径只有几米。对于火星上陨石坑数量的估计众说纷纭,从30万到63.5万余个不等,而月球上则有数百万个。

科学家们最感兴趣的是计算出不同大小陨石坑的分布情况,即计算出表面上有多少指定半径的陨石坑。根据分布情况,他们可以了解造成陨石坑的撞击物的大小和数量,这也正是天体物理学家可以将其与太阳系碰撞理论相关联的信息

其中一个理论是:巨行星不稳定。一些科学家推测,在太阳系的早期,像木星和土星这样的气态巨行星的轨道在一段时间内曾变得混乱无序。根据此理论,轨道混乱会将小行星抛向整个太阳系,从而导致激烈的碰撞。这样的天体运动就会在像月球这样的环境中留下痕迹,即大小不一的陨石坑分布。

通过计算机记录月球陨石坑,科学家们可以更好地了解月球陨石坑的大小及其分布情况。这反过来又为他们提供了更多的数据,从而证实太阳系历史的理论。

研究人员在SciNet HPC Consortium 的P8超级计算机上使用NVIDIA Tesla P100 GPU进行训练和推理。

在对月球图像进行分析时,研究人员的卷积神经网络在发现已确定的陨石坑方面的准确率达到了92%。除此之外,深度学习模型在短短几小时内就发现了6000个新的陨石坑。这几乎是人们在数十年的研究过程中手动识别数量的两倍。

Ali-Dib指出,其中大部分是研究小组希望通过神经网络捕获的较小陨石坑。这些微小的陨石坑是现有数据集中缺少的部分,因为它们太小太多,无法花费昂贵的人工时间来记录。

左图:测试数据中的月球样图。中图:研究人员的神经网络成功识别出以前人工编码的陨石坑(蓝色)和数以千计的新陨石坑(红色)。右图:人工编码的地面实况数据,用于评估神经网络。蓝色圆圈表示与研究人员的方法匹配成功的陨石坑,而紫色圆圈则表示神经网络遗漏的陨石坑。

近观月球以及其他星体

除了可以更详细地了解月球外,还可以通过类似的卫星数据了解水星和火星。未来可能还将研究其他无空气天体(如小行星、彗星和一些巨行星)的卫星数据。

研究人员已经利用一种叫做迁移学习(transfer learning)的技术观察水星的陨石坑:他们利用其采用月球数据训练的神经网络来分析水星的图像。

此外,研究小组还在研究陨石坑深度等其他特征。科学家感兴趣的另一个参数是陨石坑的年龄。但Ali-Dib表示,要弄清楚这一点,仅靠卫星数据远远不够,还“需要真正的陨石”。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4772

    浏览量

    100809
  • 计算机
    +关注

    关注

    19

    文章

    7500

    浏览量

    88035
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121207

原文标题:陨石坑数量知多少?深度学习助力科学家进一步了解太阳系的历史

文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14

    全卷积神经网络的工作原理和应用

    全卷积神经网络(FCN)是深度学习领域中的一种特殊类型的神经网络结构,尤其在计算机视觉领域表现出色。它通过全局平均池化或转置卷积处理任意尺寸的输入,特别适用于像素级别的任务,如图像分割
    的头像 发表于 07-11 11:50 1148次阅读

    神经网络三要素包括什么

    神经网络是一种受生物神经网络启发而发展起来的数学模型,它在人工智能、机器学习、计算机视觉等领域有着广泛的应用。神经网络的三要素包括神经元、权
    的头像 发表于 07-11 11:05 1236次阅读

    人工神经网络的案例分析

    元之间的连接和信息传递机制,实现对复杂数据的处理、模式识别及预测等功能。本文将通过几个具体案例分析,详细探讨人工神经网络在不同领域的应用,同时简要介绍深度学习中的正则化方法,以期为读者提供一个全面而深入的理解。
    的头像 发表于 07-08 18:20 798次阅读

    循环神经网络的应用场景有哪些

    自然语言处理(Natural Language Processing,简称NLP)是计算机科学和人工智能领域的一个重要分支,旨在使计算机能够理解、生成和处理人类语言。循环神经网络在自然语言处理领域有着广泛的应用。 1.1 语言
    的头像 发表于 07-04 14:39 1510次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入
    的头像 发表于 07-04 13:20 898次阅读

    神经网络芯片和普通芯片区别

    神经网络芯片和普通芯片的区别是一个复杂而深入的话题,涉及到计算机科学、电子工程、人工智能等多个领域。 定义 神经网络芯片(Neural Network Processor,简称NNP)是一种专门用于
    的头像 发表于 07-04 09:30 1181次阅读

    神经网络拟合的误差怎么分析

    神经网络拟合误差分析是一个复杂且深入的话题,涉及到多个方面,需要从数据质量、模型结构、训练过程和正则化方法等多个角度进行综合考虑。 引言 神经网络是一种强大的机器学习模型,广泛应用于各种领域,如图
    的头像 发表于 07-03 10:36 591次阅读

    matlab bp神经网络分析结果怎么看

    使用内置的神经网络工具箱来实现BP神经网络的构建、训练和分析网络结构设计 在进行BP神经网络分析之前,首先需要设计合适的
    的头像 发表于 07-03 10:28 1101次阅读

    如何使用神经网络进行建模和预测

    神经网络是一种强大的机器学习技术,可以用于建模和预测变量之间的关系。 神经网络的基本概念 神经网络是一种受人脑启发的计算模型,由大量的节点(神经
    的头像 发表于 07-03 10:23 766次阅读

    bp神经网络和卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间
    的头像 发表于 07-03 10:12 1207次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍卷积神经网络的分类方法
    的头像 发表于 07-03 09:40 478次阅读

    卷积神经网络和bp神经网络的区别

    不同的神经网络模型,它们在结构、原理、应用等方面都存在一定的差异。本文将从多个方面对这两种神经网络进行详细的比较和分析。 引言 神经网络是一种模拟人脑
    的头像 发表于 07-02 14:24 4124次阅读

    人工神经网络的含义和用途是

    神经网络在许多领域都有广泛的应用,包括图像识别、语音识别、自然语言处理、推荐系统、预测分析等。 一、人工神经网络的含义 定义:人工神经网络是一种由大量节点(或称为“
    的头像 发表于 07-02 10:07 857次阅读

    深度神经网络模型有哪些

    深度神经网络(Deep Neural Networks,DNNs)是一类具有多个隐藏层的神经网络,它们在许多领域取得了显著的成功,如计算机视觉、自然语言处理、语音识别等。以下是一些常见的深度
    的头像 发表于 07-02 10:00 1464次阅读