0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何通过重新分配整体预算实现智能仪表的能源效率最大化

电子设计 来源:世界电子元器件 作者:Keith Odland 2020-02-27 08:04 次阅读

对于需要RF连接的嵌入式控制系统来说,电子水表和燃气表可以作为最具挑战性低功耗设计的典型代表。这些系统的特点是电池供电(例如:燃气表和水表安装点一般不提供墙电),并要求电池使用寿命为20年以上。公共事业供应商提出这个要求,是因为仅仅一次专家维护的成本通常就超过智能仪表的全部成本。由于有超长寿命的设计要求,几乎所有水表和燃气表都使用锂亚硫酰氯(LiSOCl2)化学电池,因为其非常低的自放电特性,在仪表中的使用寿命可达20年以上。然而,这种电池价格昂贵(约1.5美元/安时),导致单个水表或燃气表中电池BOM成本高达10-15美元。

许多智能仪表供应商决定通过扩展产品通信覆盖范围使其产品脱颖而出。在他们的系统网络拓扑结构中,一定数量的仪表通过sub-GHz网络发送使用和计费信息到安装在电线杆上的中继器,中继器收集汇总信息并通过蜂窝网络或其他回传通道发送到公共事业服务商。中继器可以支持大约1000个仪表节点。然而,中继器成本往往是单个仪表节点成本的10-100倍。仪表供应商通常要面对来自其客户的压力,要求降低网络中中继器的数量,解决这一问题最现实的方法是提高发射器(TX)链路的稳固性。

改进TX链路预算的方法有许多。一种最显而易见的解决方案是使用功率放大器(PA)增大发射器输出功率。然而就电池使用寿命而言,这种方法的成本也最高。另一种解决方案是增强协议,尽量减少信息错误和随之而来的重传次数。虽然这种技术比简单增加PA的方法更加节省功耗,但仍然比当前功率预算增加大约40%。

假设重新设计的智能仪表有以下三个设计要求:

40%以上的功率预算分配给TX功能,以增加覆盖范围

维持现有LiSOCl2电池大小(A)和容量(3650mA-hr)

维持现有的电池使用寿命20年

策略很明确,在TX预算范围内增加功耗,但不增加整体功耗预算,这就意味着必须降低其他功能区功耗,例如:RX、工作模式和休眠模式预算。图1显示原始功耗预算和重新设计后的目标预算。

如何通过重新分配整体预算实现智能仪表的能源效率最大化

如何通过重新分配整体预算实现智能仪表的能源效率最大化

图1:智能仪表应用功耗预算对比

更高电压转换效率

为了增加CMOS电路性能并降低其功耗,芯片设计人员通常采用最小尺寸并且实用的装置来构建集成电路。一般情况下,嵌入式处理器和RF收发器采用0.18μm、0.13μm甚至90nm工艺设计。降低装置功率消耗的一个关键指标是降低内部工作电压,从而降低CVf开关损耗。

如何通过重新分配整体预算实现智能仪表的能源效率最大化

市场上几乎所有装置内部都集成片上低压差线性稳压器LDO),当输入电压为3.6V时,调节输出一个很低的片内电压,通常为1.8V或更低。换句话说,一个输入电压为3.6V的线性稳压器输出电压为1.8V,将产生50%转换效率。显然,随着输出电压的下降,这种效率将变得更差。

更先进的嵌入式控制器,例如图2中C8051F960 MCU,集成了比LDO控制器效率更高的开关型稳压器。大多数情况下,此装置开关效率可高达85%,可以降低来自电池的总体电流并延长电池寿命。

如何通过重新分配整体预算实现智能仪表的能源效率最大化

也就是说,无线电接收器所消耗的电池电流大约是使用DC-DC降压转换器(而不仅仅是LDO)的62.5%。采用这种方法的实际结果是降低了RX电流功耗预算。

随着这一改变的实现,我们已经接近满足新RX功耗预算要求(例如图3所示:从30%降至19%,尽管目标是降至18%)。接下来,我们有必要继续优化系统中的其他运行模式。

如何通过重新分配整体预算实现智能仪表的能源效率最大化

通常,电池供电之仪表99.9%的时间处于低功耗休眠模式。因此,尽可能降低休眠模式电路的功耗就变得非常关键。几年前,通过使用32.768 kHz的晶体在3.6V电压下驱动低功耗唤醒时钟,最佳装置可低至大约1µA电流消耗。随着进一步优化和改进,如今在同样电压下装置在使用相同功能时仅需大约700nA。虽然净节约仅300nA,但实际上该节约完全有效,可以从功率预算中直接减去此数值。

采用低功耗休眠模式装置,可以将休眠模式预算从之前的8%降低到5%(如图4所示),即可达到设计目标。然而,这仅仅是达到目标,还没有超过目标,仍需要做进一步改善以实现整体设计目标。最后的一个重点是如何降低工作模式的功耗。

如何通过重新分配整体预算实现智能仪表的能源效率最大化

降低工作模式功耗

在仪表应用中区分主要的功耗任务很重要。在本文所列举的燃气表或水表例子中,有两个主要任务:

• 为了计算流量,需要每秒钟检查簧片开关状态20次。

• 每15秒钟创建一个无线数据包,并将这些数据传输到无线发射器进行广播。

在许多计量仪表应用中,都有一个被称作寄存器编码器的装置用于记录燃气或水的流量。在计量系统中,表现为一系列开关事件或脉冲。传统计量系统中,CPU必须唤醒并对I/O引脚的开关状态进行采样。如果开关是物理簧片开关,需要额外CPU带宽来反跳开关并控制上拉电阻器,从而确保脉冲有效性并通过闭合开关来尽量降低漏电电流。软件中执行该功能,即使在最优化的系统中也需要消耗超过1µA电能。

更好的办法是使用专用输入捕获定时器,这种定时器在装置处于休眠模式时也能自动运行,与基于软件的方法相比,这种技术有很多优点。首先,开关次数可以累计到硬件寄存器上,几乎不需要CPU干预。此外,诸如开关反跳、上拉电阻器管理和自动校准的功能,可以直接集成到硬件上。采用两个定时器输入,可以支持判断流量方向的正交解码功能,使系统具备回流检查能力和防篡改功能。在3.6V电压下,即使采样率高达500Hz,专用低功耗输入捕获定时器所消耗的电流也仅为400nA,相对于采用软件执行该功能的方法来说是一个显著进步。

当CPU运行时,通常从非易失性存储器(例如Flash存储器)获取指令。40%工作模式电流用于闪存读取操作是很常见的。因此,不论在何种情况下,使用专用硬件外设(而非CPU)来移动数据都可以节省功耗。当为RF传输准备信息包时,数据需要多次编辑。例如,假设需要从仪表传输20个字节信息载荷到集中器。最初,这20个字节驻留在SRAM中;然而,该数据有可能包含客户私有信息,必须对数据进行加密;随后,循环冗余码检验(CRC)计算并将其附在加密信息后面;最后,在通过串行外设接口(SPI)传送到无线收发器前,整个信息将进行编码(例如:Manchester、3:6等),所有这些功能都可以通过CPU以软件方式实现。然而,采用专用硬件执行任务会使系统效率更高,例如图5所示专用数据包处理引擎(DPPE)。

如何通过重新分配整体预算实现智能仪表的能源效率最大化

使用DPPE不仅能减少执行功能所需的时间,还能够降低这段时间内所消耗的电流,因为Flash存储器不会被访问。这样工作模式下的功耗最终降幅可达90%。当完成以上改进后,我们可以超额完成工作模式下的节能目标,所需功耗只占总体预算6%,如图6所示。

如何通过重新分配整体预算实现智能仪表的能源效率最大化

采用上述三种技术后,我们能够成功将TX功耗预算的比重提高到70%,这完全是从RX模式、休眠模式和工作模式中节约功率的结果。换句话说,我们可以达到增加TX可靠性的整体设计目标,而这并不需要采用更大电池容量或减少电池使用寿命。

本文所示的例子说明在智能仪表应用中如何通过重新分配整体预算实现节能要求。然而,节能也可通过许多其他方式体现其价值。一个显而易见的例子是能够使用更小、更低成本电池。另一个好处是可以在相同电池条件下延长电池寿命。还有一个潜在的好处是更大设计余量和减小保修负担。设想这样的场景:仪表制造商每年生产数百万台仪表,每台仪表保修服务期限为20年。如果仪表因为过度功耗导致在使用15年后失效,制造商可能要对数千万台仪表负担潜在的保修责任。因此,额外的设计余量让工程师和投资者都感到放心。

责任编辑:gt


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • RF
    RF
    +关注

    关注

    65

    文章

    3057

    浏览量

    167201
  • 智能仪表
    +关注

    关注

    1

    文章

    162

    浏览量

    23935
  • 电池
    +关注

    关注

    84

    文章

    10663

    浏览量

    130681
收藏 人收藏

    评论

    相关推荐

    打开我的电脑网页不是最大化新窗口

    \Software\Microsoft\InternetExplorer\Main],选择窗口右侧的“Windos_Placement”,将其删除。退出“注册表编辑器”,重新启动电脑,然后打开IE,将其窗口最大化,并
    发表于 11-10 12:26

    智能仪表的优势和特点

        智能仪表在工业自动化领域的广泛应用得益于其突出的技术优势和特点,诸如其高稳定性、高可靠性、高精度、易维护性。以智能变送器为例,智能仪表具备如下优点:    (1)精度高智能变送
    发表于 11-10 15:43

    [转]LabVIEW实现窗口最大化和最小化

    代码版本控制:1.0 功能说明:LabVIEW实现窗口最大化和最小化 通过VI属性节点实现FrontPanel的最大化 最小化 以及初始大
    发表于 03-08 14:56

    智能网关智慧仪表方案

    接收到信号,进而控制其他终端设备。智能仪表智能化程度表征着其应用的广度和深度,目前的智能仪表还只是处于一个较低水平的初级智能化阶段。它具有稳定性和可靠性,在功能应用上还有待
    发表于 03-16 20:14

    如何使应用程序开机运行最大化

    我现在生成一个应用程序并开机启动了,但是如何啊能让他启动是最大化显示呢现在一开机启动不是最大化啊。。。。。。很苦恼啊,希望大家指点
    发表于 05-11 20:57

    如何最大化汽车电池包的运行时间?

    重新分配给低SoC单元。为在电池包使用寿命期间实现最大容量,需要通过主动均衡解决方案来给单个电池单元有效充电和放电,以使整个电池包维持SoC均衡。图3. 理想主动均衡
    发表于 10-24 10:29

    如何实现能源效率最大化

    如何设计智能燃气表和水表实现能源效率最大化
    发表于 05-13 07:18

    最大化自动化测试系统的精度

    最大化自动化测试系统的精度 引言 在设计自动化测试系统时,精度的最大化通常是关键的考虑因素。确定如何最大化精度总是很困难
    发表于 06-13 15:02 721次阅读
    <b class='flag-5'>最大化</b>自动化测试系统的精度

    电荷重新分配DAC,电荷重新分配DAC原理是什么?

    电荷重新分配DAC,电荷重新分配DAC原理是什么? DAC的发展经历了从电子管、晶体管到集成电路的发展过程,早期的DAC采用电子管组装而成。进入五
    发表于 03-24 13:38 1.1w次阅读

    基于系统吞吐量最大化的功率分配算法

    针对认知能量采集网络,提出一种基于系统吞吐量最大化的功率分配算法。该算法在满足2个次用户节点采集能量的因果性限制和对主用户干扰限制的条件下,构建了系统吞吐量的优化模型;通过变量代换和问题等价性变换
    发表于 01-14 16:49 0次下载
    基于系统吞吐量<b class='flag-5'>最大化</b>的功率<b class='flag-5'>分配</b>算法

    如何通过PMBus改变Arm Cortex μP内核电压实现效率最大化

    ADI Guneet Chadha演示如何通过PMBus改变Arm Cortex μP内核电压,实现效率最大化当最终硅芯电压从最初预期值改变时,此信息很有用
    的头像 发表于 07-24 06:17 2606次阅读

    福特推出全新10座小巴 意图实现能源效率和电动车续航里程最大化

    据外媒报道,福特公司推出全新10座小巴TransitSmart Energy Concept,探索实现能源效率和电动车续航里程最大化的新技术。
    发表于 04-25 15:43 2128次阅读

    基于互信息最大化的Raptor码优化设计方法

    基于互信息最大化的Raptor码优化设计方法
    发表于 07-02 11:47 8次下载

    箱包出口订单暴涨, APS计划排产助力箱包企业实现生产效率最大化

    APS计划排产可以提高设备利用率,充分利用设备产能,减少停机换产损失。助力箱包企业实现生产效率最大化
    的头像 发表于 10-26 17:25 874次阅读

    重新分配FlexRAM的方法

    应用笔记AN12077 解释了如何通过应用程序启动代码中的软件重新分配FlexRAM。下面将进一步详细说明进行这些修改的方法。
    的头像 发表于 12-28 13:55 1792次阅读