0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

叶轮表面防磨技术的特点及存在的问题分析

电子设计 作者:电子设计 2018-10-29 08:55 次阅读

1. 叶轮常用防磨技术的特点和问题

1.1 叶轮常用防磨技术的特点

叶轮既指装有动叶的轮盘,是冲动式汽轮机转子的组成部分。又指轮盘与安装其上的转动叶片的总称。还指轮盘与安装其上的转动叶片的总称。为了延长风机服役周期,降低发电成本,国内的燃煤电厂对排粉风机、引风机叶轮几乎无一例外地要实施防磨处理。粉风机陶瓷防磨,选粉风机陶瓷防磨,旋风分离器陶瓷防磨性能特点:超长耐磨使用寿命:由于风机叶轮工作表面复合陶瓷层硬度HRA≥86(增韧氧化铝复合材料),局部磨损严重部位使用二次烧结氮化硅增韧陶瓷或氧化锆增韧氧化铝陶瓷,最高可以达 到HRA94以上,其耐颗粒冲刷磨损性能至少是普通碳化钨堆焊、喷涂喷焊以及合金粉块状焊接等常规处理方式提高5倍以上,比基体16Mn钢材高100倍以 上;厚度为1.5mm陶瓷片实际使用己达五年,平均磨损不到0.2mm。目前仍在采用,且具有一定效果的可分为热态和冷态两种防磨技术。

叶轮表面防磨技术的特点及存在的问题分析

电厂风机叶轮常用防磨技术的分类和特点

叶轮表面防磨技术的特点及存在的问题分析

1.2 热态防磨技术存在的主要问题

1.2.1 裂纹倾向大

在对刚性或规格大的整体叶轮进行较大范围的堆焊和喷焊防磨处理时,因热输入量大,工件受热不均所形成的热应力,会诱发叶轮上的承载焊缝产生裂纹;在高强度、低韧性的堆焊耐磨焊道和焊层上必有裂纹产生;在防磨工艺不当时,堆焊耐磨焊道上的裂纹极易向叶轮的母材中扩展;经多元共渗的护板,其周边近缝区因渗入元素的污染及硬度值偏高,很不容易清理干净。

1.2.2 变形无法控制

刚性或规格小的整体叶轮在进行热态防磨处理时,无论采用对称施焊,刚性固定等工艺措施,均不能有效地控制叶轮的变形。而叶轮的尺寸及叶片的型线得不到保证,将对风机的运行带来不利影响。

1.3 冷态防磨技术存在的主要问题

1.3.1 防磨效果有限

粘涂技术是指将填加特殊材料(简称骨材)的胶粘剂(Composite Putty)涂敷于零件表面,以赋予零件表面特殊功能(如耐磨损、耐腐蚀、绝缘、导电、保温、防辐射)的一项表面新技术。此类胶粘剂就是修补剂。粘接主要是实现零部件之间的连接,而粘涂是在零件表面形成功能涂层。粘涂作为粘接技术的发展,具有粘接技术的大部分优点,如室温固化、应力分布均匀、能粘涂不同的材料等。作为一种表面修复和强化技术,与堆焊、电镀、电刷镀、热喷涂相比,粘涂工艺简便,不需专门设备,只需将修补剂涂敷于待修表面,常温固化,室温操作,不会使零件产生热影响和变形,可根据需要使零件表面获得耐磨、耐腐、绝缘、导电等性能,是一种快速而价廉的修复和预保护工艺。总之,粘涂作为一种表面修复和预保护技术,具有突出优点:它可免除喷涂、电、气焊的困扰,可以解决用其它表面技术难以解决的技术难题。

1.3.2 耐磨保护层不牢固

粘涂耐磨层和镶嵌陶瓷,因其物理性能、结合强度及结构形式的限制,当叶轮在一定温度下高速旋转时,易脱落和发生崩裂。

2. 陶瓷耐磨叶轮的关键技术

2.1 MD-Ⅲ航空级高强韧性胶粘剂简介

氧化铝陶瓷是已发现的最硬的无机化合物之一,氧化铝陶瓷是一种以氧化铝(AL2O3)为主体的材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。

目前燃煤电厂在煤粉管道和弯头、煤粉分离器锥体等静止部件和设备上,采用粘接氧化铝陶瓷元件进行防磨处理已经比较普遍。而把耐磨性优异的氧化铝陶瓷应用在承受交变动载荷、有一定温度、线速度大和可靠性要求高的风机叶轮上,虽早就有所尝试,但成功的范例很少。要在高速旋转的叶轮上牢固地粘接氧化铝陶瓷元件,绝非是一项简单的技术。利用自蔓延高温合成技术、拱形原理、陶瓷橡胶复合工艺和焊接等方法,将氧化铝陶瓷与叶轮上的平、弧面进行大面积复合连接,即不现实、不可靠亦不经济,氧化铝陶瓷的耐磨性决定叶轮的使用寿命,而胶粘剂的强韧性则决定了叶轮运行的可靠性。因此高强韧性胶粘剂是粘接型陶瓷耐磨叶轮关键技术中的核心内容。

根据电厂风机叶轮的工况条件,现场施工环境的要求,MD-Ⅲ高强韧性胶粘剂对钢和陶瓷都应有优良的粘接性,工艺性和触变性;可在室温下固化;具有相当高的强度和韧性;具有较高的耐热性和耐老化性;完全能在风机正常的工况和温度条件下长期可靠地工作。

在MD-Ⅲ高强韧性胶粘剂的研制中,以巩固其拉伸强度和拉伸剪切强度为基础,摒弃传统的增韧改性材料,通过组织变量系列试验,选用能参与固化反应、相容性好、含有新型活化韧性因子的增韧剂,增韧剂是指耐油性随丙烯腈含量增加而提高。丁腈橡胶的低温性能较差,。玻璃化温度与丙烯腈含量有关,含量越多则玻璃化温度也越高。丁腈橡胶的耐热性较好,可在120℃下连续使用,电绝缘性一般。使胶粘剂的分子结构中不但包含有增韧效果显着、耐老化性好的封端基因,而且还包含有许多柔性链段来缓解脆硬性。

2.2 MD-Ⅲ胶粘剂的静态力学性能曲线

图1中的两条实线曲线,为根据《胶粘剂对接接头拉伸强度的测定》(GB/T6329-1996)测出的,在8种不同温度条件下, MD-Ⅲ高强韧性胶粘剂的拉伸强度,即σb-T曲线。及根据(GB7124-86)测出的MD-Ⅲ高强韧性胶粘剂的拉伸剪切强度,既στ-T曲线。图1中的两条虚线曲线,为号称“胶王”的CGJ高强韧性胶粘剂的 σb-T和στ-T曲线。由图1可见,在温度为100℃时,MD-Ⅲ高强韧性胶粘剂的拉伸强度σb达到最高值(48.8MPa),而在室温至120℃范围内, σb值波动不大。MD-Ⅲ高强韧性胶粘剂的拉伸剪切强度στ,在室温至170℃的范围,是随着温度的升高亦呈缓慢上升的趋势,当温度为170℃左右时,其στ值高达35.4MPa。但随着温度的升高,CGJ 胶粘剂的σb、στ值均发生急剧下降,在温度达到150℃时,与室温条件下比较,其στ值下降了67.7%,而σb值的下降幅度达到了84%。

2.3 MD-Ⅲ胶粘剂的动态力学性能曲线

参照《胶粘剂剪切冲击强度试验方法》(GB/T6328-1999),粘接10mm×10mm×55mm的对接接头试样(不带缺口),采用特制的摆锤,在9种不同温度条件下,使试样在冲击弯曲状态发生折断。图2为冲击韧性值-温度曲线(αk-T曲线)。图2显示,在温度为室温至125℃左右范围,CGJ胶粘剂的冲击韧性值αk均比MD-Ⅲ高强韧性胶粘剂的αk值高。胶接(粘合、粘接、胶结、胶粘)是指同质或异质物体表面用胶粘剂连接在一起的技术,具有应力分胶粘剂布连续,重量轻,或密封,多数工艺温度低等特点。胶接特别适用于不同材质、不同厚度、超薄规格和复杂构件的连接。胶接近代发展最快,应用行业极广,并对高新科学技术进步和人民日常生活改善有重大影响。而MD-Ⅲ高强韧性胶粘剂在室温至200℃范围,始终处于“增韧”的势头,其增幅达到17.4%。即使温度升高到了250℃,其αk值仍然保持在57KJ/m2的水平。

3. 陶瓷耐磨叶轮的可靠性

3.1 陶瓷耐磨叶轮的可靠性分析

风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是我国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,压缩机以及罗茨鼓风机,离心式风机,回转式风机,水环式风机,但是不包括活塞压缩机等容积式鼓风机和压缩机。气体压缩和气体输送机械是把旋转的机械转换为气体压力能和动能,并将气体输送出去的机械。风机在工作中,气流由风机轴向进入叶片空间,然后在叶轮的驱动下一方面随叶轮旋转;另一方面在惯性力的作用下提高能量,沿半径方向离开叶轮,靠产生的离心力来做功的风机称为离心式风机。离心式风机叶轮的板式叶片,多为其径向尺寸大于轴向尺寸的圆弧窄叶片形式。在对叶片进行受力分析和强度计算时,可将整片叶片视为承受均布载荷的梁。当叶轮以角速度ω=πn/30高速转动时,在叶轮最大半径上的叶片工作面出口处,粘接的陶瓷元件受到了最大离心力P的作用,另还主要受到胶粘剂抵抗拉伸剪切破坏时的最大力P1,及气固两相流压应力等作用。显然只有保证P1>P时,叶片上的陶瓷元件才不会发生脱落。考虑到现场大面积粘接施工条件和叶轮工作温度等因素的影响,为安全稳妥起见,只将在实验室条件下测定的胶粘剂拉伸剪切强度στ值的一半代入计算,即P1=Sστ/2,并引入安全系数K=P1/P,则有K=450στ/π2n2ρδRmax。

在正常工况下排粉风机、引风机的工作温度为70℃和150℃左右。常用陶瓷元件的厚度δ=1.5mm,其体积密度ρ=3.7g/cm3。以粘接了氧化铝陶瓷元件至今已投入2年7个月和3年9个月运行的两种风机叶轮为例,通过安全系数的计算和实际业绩的验证,MD-Ⅲ高强韧性胶粘剂确有很高的粘接安全系数。两种粘接型陶瓷耐磨叶轮安全系数计算结果见表2。

2 两种风机叶轮安全系数的计算结果

依照陶瓷耐磨叶轮须安全可靠运行的最基本原则,如果说DM-Ⅲ胶粘剂所具有的足够高的强度指标是防止陶瓷元件脱落的首要条件的话,那么如何减少和弥补陶瓷元件与金属材料的线膨胀系数差异较大,在温度变化时两者间产生的相对位移量给耐磨保护层带来的不利影响,则是陶瓷与金属复合连接技术中必须解决的重要课题。

由于物体受热膨胀其长度的增加正比于物体的原始长度和温度变化值Δ T ,已知在20℃-300℃范围,氧化铝陶瓷(Al2O3 95%)和Q345钢的线膨胀系数分别为×10-6℃-1和10.99×10-6℃-1,一般在正常工况下,排粉风机和引风机叶轮的工作温度不超过100℃和150℃,α、ΔT视为常数,因此陶瓷元件的设计尺寸便直接决定了其受热后所增加的位移量ΔL。显然尽可能缩小陶瓷元件的尺寸,将更有利于控制ΔL的大小。因氧化铝陶瓷优异的耐磨性能,陶瓷元件的厚度一般设计为1-2mm即可。考虑制作、施工诸多因素及实践证明:风机叶轮通用型陶瓷元件的最佳量化单元是10mm×10mm×1.5mm。即使风机有150℃的温度变化,这个最小陶瓷单元与叶片金属间的相对位移量也仅为6.6μm。因陶瓷元件、胶粘剂和金属之间为柔性连接,MD-Ⅲ胶粘剂的αk值在20℃-200℃内是随温度的升高而增加,对于6.6μm极其微小的位移量,通过高韧性的胶层便可以吸收。

4 陶瓷耐磨叶轮的特点

4.1 运行安全可靠

耐磨陶瓷风机叶轮简介:是指在风机叶轮的出口、叶片与后盘连接部位粘贴AL2O3瓷片,以提高耐磨性能。耐磨陶瓷风机叶轮是综合了现代新型工程材料及先进的三元流理论设计制造的新型产品。在传统的风机制造技术基础上,采用现代工程陶瓷材料,金属复合制造技术,在风机设备的主要工作表面形成一个具有优异耐磨性能的表层,可使风机叶轮的耐磨使用寿命提高至少三倍以上,风机效率提高10-30%。

因MD-Ⅲ高强韧性胶粘剂的固化一般在室温条件下即可。有时为了缩短固化时间或为了改善粘接性能,其加热固化温度亦不会超过100℃,这就避免了采用热态防磨技术时,整体叶轮因不均匀受热产生应力后,导致其诱发裂纹和引起的变形给风机运行带来安全隐患的可能。

目前仍在沿用一种传统的,在叶片上加焊防磨护板的方法。因叶片与护板仅是依托四周的角焊缝进行有限的“线连接”,一但角焊缝被严重磨损或被磨透后,所造成整块护板瞬间飞离、高速转动叶轮的平衡被破坏、风机振动急剧增大,乃至引起重大事故的实例屡见不鲜。采用在叶轮上焊接钢制附件,并镶嵌上陶瓷元件的方法,因受其结构形式和陶瓷元件几何尺寸的限制,当叶轮在一定温度的工况下运转时,陶瓷元件开裂和脱落的情况时有发生。

采用MD-Ⅲ高强韧性胶粘剂和氧化铝陶瓷对叶轮进行防磨处理,只要在施工过程中严格执行粘接工艺规程,按照技术要求认真操作,且耐磨叶轮能保证在正常的工况条件下工作,就不会发生陶瓷元件脱落的可能。电厂风机叶轮选用陶瓷元件规格为10mm×10mm×1.5mm的最佳量化单元。这种最小单元的质量仅为0.55g左右。反馈的信息显示,在已投入运行的近百台粘接型陶瓷耐磨叶轮中,也曾发生过5台叶轮因种种原因陶瓷元件脱落的现象。其中一台叶轮因别的原因在停机检修时被发现,一片叶片上最多有16件陶瓷元件脱落,但这并未给风机的安全平稳运行产生什么影响(该叶轮至此已运行3年1个月)。因为16件陶瓷元件总的质量仅有8.9 g,且又未集中分布在叶片的一个位置上。电厂在停机检修时,仅顺便稍作修复性粘接处理后,即马上将其又投入运行。

4.2 耐磨性优异

作为工程陶瓷中用途最广泛的氧化铝陶瓷,其硬度相当高,在10级莫氏硬度中为9级,仅低于金刚石。氧化铝陶瓷与几种耐磨材料的硬度之比较见表3。

叶轮表面防磨技术的特点及存在的问题分析

表氧化铝陶瓷、耐磨材料的硬度比较

注:86.6HRA=70HRC

实践证明,材料的硬度是一个与耐磨性有关的重要指标,而材料的耐磨性才是衡量其耐磨性能优劣的最终指标。表4给出了氧化铝陶瓷与几种常用耐磨材料的比较磨损试验结果。

叶轮表面防磨技术的特点及存在的问题分析

表4 氧化铝陶瓷与耐磨材料的相对耐磨性

氧化铝陶瓷作为脆性材料,在冲蚀角θ按近90o的情况下,其抗冲蚀磨损性能相对较低是不争的事实。对于绝大多数采用焊接结构钢制作的离心式和轴流式叶轮的叶片,虽然气固两相流在θ=90o左右的冲蚀磨损处,仅限于在叶片入口端部和动叶片前缘部一个较窄的范围,但这个较窄范围,往往却是叶片磨损最严重的区域之一。为此专门特制的增厚流线形陶瓷异型元件,即可巧妙地利用叶轮旋转时离心力的作用防止叶片入口处陶瓷元件的脱落,避免固粒冲刷对片状陶瓷元件底部胶层的冲蚀掏空,还能将冲蚀角的角度大大减少,以分散高速固粒的冲击能量,从而显着地提高了叶片入口端部的抗冲蚀磨损能力。图3为125MW机组,Φ=2000mm的排粉风机叶轮,在叶片入口端部,未粘接和粘接有增厚流线形氧化铝陶瓷元件的上、下部位,经4个半月运行后,其被磨损与抗磨损的鲜明对比形状。

4.3 能耗低效率高

某电厂300MW机组的排粉风机叶轮直径为2170mm,有15片叶片。为延长使用寿命,若采用传统的加焊防磨护板的方案,并在δ=8mm的护板上堆焊厚度约为2.5mm的合金耐磨层。每块护板的面积为1345cm2,一台叶轮所增加的重量为126.7Kg以上(未计合金耐磨层的重量)。这使得叶轮的转动惯量增大,也增加了风机的轴动率和耗电量。

在叶片及其他区域加焊防磨护板(一般厚度≥8mm),或在叶片上焊接钢制附件并镶嵌较厚的陶瓷元件(一般总厚度为8-14mm),或在叶片、护板上堆焊2-3mm的耐磨焊道和凹凸不平的耐磨层,除了会增加叶轮的自重外,还会使叶轮,尤其是排粉风机叶轮原本狭窄的流道更加变窄,使得流道中气固两相流的流动受阻,并干扰流体的正常流动,使得流动效率降低。

而最小单元为10mm×10mm×1.5mm的陶瓷元件,完全可顺应叶片的几何型线,紧紧地贴合在叶片不同的曲面上,加之未受到高温的作用,叶片的原始型线足以得到保持。而δ=1.5mm的陶瓷元件几乎不会改变叶轮内部的流道尺寸,故不会给风机的流动效率带来负面的影响。

4.4 叶轮防磨无盲区

在电厂现场对离心式叶轮整体采用焊接或热喷涂技术防磨,其防磨的区域和质量与电焊钳、喷枪枪体在叶轮中的空间位置、距离和角度密切相关。一般而言,这对大、中型引风机叶轮及排粉风机叶轮叶片的出口段,问题不显突出。但对于流道狭长的排粉风机叶轮叶片工作面入口段一定的区域及小型引风机叶轮的叶片入口处,由于受到近距离相邻叶片及前、后盘的阻碍,在以上两个区域进行电弧堆焊、碳弧堆焊、火焰喷焊和电弧喷涂时,存在焊接、喷涂(焊)角度受限,距离不足,熔池、“镜面”观察受阻,焊条、碳棒、粉末等到不了位,甚至无法实施的状况,从而使用户对该区域的防磨质量提出了质疑。

在应用粘接的方法对叶轮的各区域进行防磨处理时,只要在操作者手臂可以触摸到的范围均可将陶瓷元件牢固地粘接到位,并能确保其施工质量,防磨区域几乎不受任何的限制。显而易见,在对流道狭窄的排粉风机叶轮进行防磨处理时,这具有非常重要的实际意义。

5 陶瓷耐磨叶轮的运行业绩

燃煤电厂风机叶轮的磨损失效是冲蚀磨损和磨粒磨损联合作用的结果。而上述几种耐磨材料和氧化铝陶瓷的磨损试验结果和相对耐磨性的关系,仅仅是在实验室单一的磨损类型条件下测出的几组数据,不能表明氧化铝陶瓷应用到电厂风机上后,叶轮最终的使用期限,只能说明氧化铝陶瓷的确要比几种常用的耐磨材料在特定的磨损条件下,具有更高的抗磨损性能。超长耐磨使用寿命:由于风机叶轮工作表面复合陶瓷层硬度HRA≥86(增韧氧化铝复合材料),局部磨损严重部位使用二次烧结氮化硅增韧陶瓷或氧化锆增韧氧化铝陶瓷,最高可以达到HRA94以上,其耐颗粒冲刷磨损性能至少是普通碳化钨堆焊、喷涂喷焊以及合金粉块状焊接等常规处理方式提高5倍以上,比基体16Mn钢材高100倍以上;厚度为1.5mm陶瓷片实际使用己达五年,平均磨损不到0.2mm。

目前这项技术已受到越来越多的电厂用户的认可和欢迎。如图4-图6所示,即为最好的业绩佐证。安全可靠效率高:由于采用了各种高技术复合陶瓷技术,以及先进的无损探伤和修复技术,确保陶瓷与金属复合层在叶轮高速运转下始终保持高达35MPa的抗剪强度;根据不同陶瓷复合工艺,耐温最高可达450℃。根据理论计算,常规 1.5mm厚瓷片每平方米仅重5.5公斤,复合层为陶瓷层提供的结合剪切力是其最大向心力的100倍以上。而且复合层韧性极佳,可以适应高温及振动工况。在90-160℃的工况下实际运行达7年以上,粘贴各型风机近2000多台,没有一次因陶瓷脱落而导致风机非计划停运的事故,经受住了高温、长时间及批量的考验。

为300MW机组2号炉乙侧的2850/1800型轴流式引风机叶轮的陶瓷耐磨动叶片。该叶片原采用氧乙炔焰喷焊防磨处理,寿命提高到了约14个月。但经喷焊后叶片型线有一定改变,且防磨的效果仍不太理想。后采用氧化铝陶瓷防磨技术,彻底解决了叶片的变形问题,而耐磨的效果更显突出,图中显示经过3年2个月的运行,停炉检修时发现,动叶片的压力面和进气端前缘磨损甚微,预计还可运行一个大修期以上。

为200MW机组6号炉A侧φ=2000mm的排粉机叶轮。由于原叶轮磨损严重,停炉检修时采用焊条补焊修复后,累计运行约6个月即需更换新叶轮。后采用在叶片上加焊防磨护板,并在护板上堆焊耐磨焊道的防磨措施,其使用寿命亦勉强维持在1年半左右。由于曾发生过叶片与护板的连接焊缝被磨透,导致共有4片护板运行时突然飞离叶轮击穿机壳,几乎伤人的恶性事故,现已将3台炉共6个排粉机叶轮全部改为氧化铝陶瓷防磨。图中叶轮系运行2年7个月后的现场实际情况。

为200MW机组3号炉甲侧φ=2350mm双吸引风机叶轮。因电除尘器的原因叶轮磨损较大。电除尘器是火力发电厂必备的配套设备,它的功能是将燃灶或燃油锅炉排放烟气中的颗粒烟尘加以清除,从而大幅度降低排入大气层中的烟尘量,这是改善环境污染,提高空气质量的重要环保设备。它的工作原理是烟气通过电除尘器主体结构前的烟道时,使其烟尘带正电荷,然后烟气进入设置多层阴极板的电除尘器通道。由于带正电荷烟尘与阴极电板的相互吸附作用,使烟气中的颗粒烟尘吸附在阴极上,定时打击阴极板,使具有一定厚度的烟尘在自重和振动的双重作用下跌落在电除尘器结构下方的灰斗中,从而达到清除烟气中的烟尘的目的。烟尘荷载、风荷载,地震荷载作用下的静、动力分析电厂曾请人到现场对整体叶轮的叶片喷焊镍基碳化钨合金粉末,使得其寿命提高了近2倍。但在喷焊中曾发现叶片与中盘处的角焊缝出现过7条180—315mm的纵向焊趾裂纹,后经清除、补悍和无损探伤得以修复。但经整体喷焊后叶轮和叶片型线变化较大,风机振动值有所增加而运行效率也有一定的下降。维修简单方便:采用特殊的陶瓷-金属复合制造技术,可对运行过程中出现的异常陶瓷脱落,异常局部磨损,进行快速及时地修补,同时不会对叶轮输入热量,防止叶轮变形,保证叶轮及附件及时投入运行。

6 结论

试验和实践证明,氧化铝陶瓷具有一般金属耐磨材料难以超越的抗磨损性能。粘接型陶瓷耐磨叶轮运行的可靠性和耐磨性,关键取决于胶粘剂性能、粘接工艺、氧化铝陶瓷质量和风机最高工作温度四个因素,缺一不可。在风机叶轮上选用MD-Ⅲ航空级高强韧性胶粘剂粘接氧化铝陶瓷元件,可以成倍地延长叶轮的使用寿命,是一项实用、安全和有效的防磨技术,是燃煤发电厂提高机组设备健康水平、降低发电成本、增强企业市场竞争力的良好途径。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 计算
    +关注

    关注

    2

    文章

    442

    浏览量

    38696
  • 发电
    +关注

    关注

    0

    文章

    209

    浏览量

    27288
  • 风机
    +关注

    关注

    1

    文章

    383

    浏览量

    24499
收藏 人收藏

    评论

    相关推荐

    NREC叶轮设计与分析

    招兼职NREC叶轮设计与分析等相关专业讲师,短周期的培训,可周末,如您想挣点外块,积累资源,充实生活,请联系我,要求有实际项目经历,两年以上项目经历,表达能力较好,QQ 2355811929 ,邮件soft@info-soft.cn
    发表于 02-06 09:47

    浅析表面分析与XPS的技术与市场

    、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。  由于最近几十年超高真空、高分辨和高灵敏电子测量
    发表于 08-06 17:17

    表面贴装技术特点分析

    、抗振能力强。焊点缺陷率低。  高频特性好。减少了电磁和射频干扰。   易于实现自动化,提高生产效率。降低成本达30%~50%。 节省材料、能源、设备、人力、时间等。 ◆ 为什么要用表面贴装技术
    发表于 08-30 13:14

    离心泵的四种主流节能技术分析

    技术和专用节能水泵,下面我们来分析一下这几种节能技术特点。切割叶轮节能在离心式水泵的构造中,决定水量大小和扬程高低的一个重要部件就是
    发表于 09-24 10:49

    云酷科技锅炉防爆管理系统

    推迟事故“高发期”的到来,延长机组使用寿命有着重要意义。云酷科技针对电厂锅炉防爆管理存在诸多问题,以信息化技术为基础,结合大数据分析
    发表于 10-24 11:44

    电厂锅炉安全分析与预防

    电厂锅炉“四管”泄漏既有管理原因,也有技术原因。防止锅炉“四管”泄漏工作是否有效,归根到底还在于管理是否有效。问题主要在于锅炉防爆管理制度不完善及责任落实不到位,尤其是在目前检修工作外包和部分
    发表于 04-02 16:16

    电厂安全:锅炉防爆管理工具的重要性

    、数据分析技术、三维可视化技术赋能传统管理业务,将传统以个人经验为主的防爆管理工作转换为以数据为核心驱动的信息化管理模式,能够进一步提高
    发表于 04-17 17:26

    锅炉四管泄漏及防爆问题分析

    认真细致的防爆检查工作,重视设备的更新改造,重视问题和事故的深入分析和落实整改。这样,才能保证设备的健康状况,将锅炉四管泄漏问题降低到最低水平。
    发表于 05-15 15:33

    三维可视化技术在生物质锅炉防爆管理中的应用

    当前生物质电厂锅炉防爆管理以传统管理方式为主,严重依赖一线管理人员的个人经验,缺少信息化的支撑。针对生物质锅炉设备特性以及泄漏因素,以三维可视化技术以及大数据分析
    发表于 09-17 16:45

    全面概述锅炉防爆可视化管理系统

    的基础,而锅炉防爆工作涉及管理体系建设、锅炉运行、检修、金属、化学、热工和燃料等多个专业,是一项系统工程。河北云酷科技有限公司针对防爆工作的
    发表于 07-19 17:12

    循环流化床锅炉技术研究

    本文针对循环流化床锅炉的技术进行研究,根据其发生磨损的性质和特点的不同,采用不同的措施进
    发表于 11-20 11:51 14次下载

    现代表面分析技术在半导体材料中的应用

    本文简要介绍了几种现代分析仪器的特点,着重报道现代表面分析技术在 半导体材料 中的应用
    发表于 11-01 17:41 28次下载
    现代<b class='flag-5'>表面</b><b class='flag-5'>分析</b><b class='flag-5'>技术</b>在半导体材料中的应用

    激光焊接技术在不锈钢水泵叶轮加工中的特点优势及注意事项

    不锈钢叶轮是不锈钢泵的重要零部件,它的尺寸及精度直接影响到水泵的水力性能的高低。特别是闭式叶轮,因为其具有高效率的特点,被广泛应用在扬程、效率高的离心泵上。传统上比较普遍的焊接不锈钢水泵叶轮
    的头像 发表于 11-02 14:43 2915次阅读

    风机叶轮积灰怎么办?用这种不粘涂层彻底解决叶轮积灰问题

    【摘要】采用1091/1092高分子陶瓷聚合物材料不粘涂层技术针对输送风机叶轮积灰进行应用;对输送风机叶轮积灰原因和积灰涂层优势进行了
    的头像 发表于 09-26 10:56 1548次阅读
    风机<b class='flag-5'>叶轮</b>积灰怎么办?用这种不粘涂层彻底解决<b class='flag-5'>叶轮</b>积灰问题

    让煤引风机叶轮告别积灰问题,这种叶轮积灰涂层值得推荐!

    引风机是输送管线气路的关键设备,主要有送风机、引风机 、一次风机等几种。它是利用煤引风机提高输送介质的压力和流速来实现混合气体的输送、满足用户的需求的。工业气体中的化学成分较为复杂,腐蚀杂质
    的头像 发表于 07-26 15:07 756次阅读
    让煤<b class='flag-5'>磨</b>引风机<b class='flag-5'>叶轮</b>告别积灰问题,这种<b class='flag-5'>叶轮</b><b class='flag-5'>防</b>积灰涂层值得推荐!