BigDL是基于Apache Spark的分布式深度学习框架,借助现有的Spark集群来运行深度学习计算,并简化存储在Hadoop中的大数据集的数据加载。
1、丰富的深度学习支持。模拟Torch之后,BigDL为深入学习提供全面支持,包括数字计算(通过Tensor)和高级神经网络 ; 此外,用户可以使用BigDL将预先训练好的Caffe或Torch模型加载到Spark程序中。
2、极高的性能。为了实现高性能,BigDL在每个Spark任务中使用英特尔MKL和多线程编程。因此,在单节点Xeon(即与主流GPU 相当)上,它比开箱即用开源Caffe,Torch或TensorFlow快了数量级。
3、有效地横向扩展。BigDL可以通过利用Apache Spark(快速分布式数据处理框架),以及高效实施同步SGD和全面减少Spark的通信,从而有效地扩展到“大数据规模”上的数据分析
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
英特尔
+关注
关注
60文章
9860浏览量
171258 -
神经网络
+关注
关注
42文章
4733浏览量
100410 -
深度学习
+关注
关注
73文章
5463浏览量
120876
发布评论请先 登录
相关推荐
如何构建神经网络?
原文链接:http://tecdat.cn/?p=5725 神经网络是一种基于现有数据创建预测的计算系统。如何构建神经网络?神经网络包括:输入层:根据现有数据获取输入的层隐藏层:使用反
发表于 07-12 08:02
卷积神经网络模型发展及应用
,典型的模 型为 SENet、SKNet 以及 CBAM(convolutional block attention module)。传统的卷积神经网络模型性能十分优秀,已经 应用到各个领域,
发表于 08-02 10:39
卷积神经网络模型有哪些?卷积神经网络包括哪几层内容?
、视频等信号数据的处理和分析。卷积神经网络就是一种处理具有类似网格结构的数据的神经网络,其中每个单元只处理与之直接相连的神经元的信息。本文将对卷积神
构建神经网络模型的常用方法 神经网络模型的常用算法介绍
神经网络模型是一种通过模拟生物神经元间相互作用的方式实现信息处理和学习的计算机模型。它能够对输入数据进行分类、回归、预测和聚类等任务,已经广泛应用于计算机视觉、自然语言处理、语音处理等
发表于 08-28 18:25
•1006次阅读
基于神经网络算法的模型构建方法
神经网络是一种强大的机器学习算法,广泛应用于各种领域,如图像识别、自然语言处理、语音识别等。本文详细介绍了基于神经网络算法的模型构建方法,包括数据预处理、
深度神经网络与基本神经网络的区别
在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
神经网络预测模型的构建方法
神经网络模型作为一种强大的预测工具,广泛应用于各种领域,如金融、医疗、交通等。本文将详细介绍神经网络预测模型的构建方法,包括
PyTorch神经网络模型构建过程
PyTorch,作为一个广泛使用的开源深度学习库,提供了丰富的工具和模块,帮助开发者构建、训练和部署神经网络模型。在神经网络模型中,输出层是
神经网络辨识模型具有什么特点
神经网络辨识模型是一种基于人工神经网络的系统辨识方法,它具有以下特点: 非线性映射能力 :神经网络能够处理非线性问题,可以很好地拟合复杂的非
如何构建多层神经网络
构建多层神经网络(MLP, Multi-Layer Perceptron)模型是一个在机器学习和深度学习领域广泛使用的技术,尤其在处理分类和回归问题时。在本文中,我们将深入探讨如何从头开始构建
评论