0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何构建数据科学项目才能更高效?

物联网之声 来源:未知 作者:胡薇 2018-09-06 09:01 次阅读

数据科学是什么?数据分析?机器学习?还是数据工程?答案可能有很多,但也许只有直接与某个公司的数据科学家交流,才能了解该公司是如何看待数据科学的。由Netflix举办的第三届聚焦数据科学的WiBD研讨会,为我们所有人了解Netflix的数据科学故事提供了绝佳机会,一起来看看吧!

数据科学是一个非常抽象的概念。有些人认为它是数据分析,也有一些人认为它是机器学习,还有些认为它带有一些数据工程的味道。

业界对数据科学这一概念难以达成一致有很多原因,其中一点就是,现在大范围内的岗位都可能涉及数据科学,并且这些岗位的职责都不尽相同。

此外,不同公司之间的细微差别,甚至是同一公司内部的不同团队之间的细微差别都会导致对数据科学的理解不同。因此,只有直接与某个公司的数据科学家交流才能了解该公司是如何看待数据科学的。

信息不对称是一个令人遗憾的事实,它阻碍了许多人追寻数据科学以及数据工程这一职业的道路。

如果我们投入越多的工作时间来解决这一棘手的问题,那么这一阻碍也就能越早被突破。关于这一点,推荐一个社会教育企业——HasBrain,该企业致力于填补信息缺口并且为想要学习并找到通往数据科学和数据工程道路的人提供帮助。

构建数据科学项目

头脑风暴活动

现实世界的数据科学项目与理论上的有何不同,如何构建数据科学项目才能更高效?Becky在研讨会上展示的数据科学项目体系对该问题总结得非常好。

以下是Becky的总结

步骤一:从了解业务问题开始

下面的幻灯片,是Becky就如何定义成功而列出的一系列业务问题。如果你想要很好地证明你的概念,你需要一开始要以一个简单模型作为基准,然后从增量改善(incremental improvement)的角度来评估模型的价值。

否则,你会一直困扰于75%的准确度是否足够好这样的问题。拥有物理学博士学位的Becky也提到,专业学者总是会仔细检查到最后那20%,以确保结果是无懈可击的。所以,如果博士生们想要成为数据科学家,这一点是需要特别注意的。

步骤二:制定技术计划

除了下面的幻灯片中列出的细节,Becky还强调了沟通的重要性,同时还提出要站在利益相关者的角度思考。因为利益相关者最关心的未必是机器学习的误差测度,所以要学会如何将业务目标转化为价值优化问题,这一点极为关键。

相较于“重新发明轮子”,弄明白和学会使用现有的技术可以为我们节省很多时间。现有的用于监督学习的技术,如预测建模或分类,都有很好的文档记录。

然而,在相对更先进以及更专业的机器学习领域(例如NLP和图像分类),新文章不断地发表,技术不断地更新。因此,即时了解最新和最好的研究论文是数据科学家们需要牢记的黄金准则。

步骤三:对概念进行初步验证 -> 不断迭代/验证直到成功或是无法再继续 -> 向利益相关者传达结果

如果你对工作流程甚至是数据科学家使用的工具或库还有任何的疑问,都可以参考Becky在项目构建中对“doing the project”这部分的详细描述。

步骤四:模型产品

如果一些数据科学家告诉你必须要学会编写产品级代码,那么,他们可能需要独立处理模型产品化,而不是交给机器学习工程师或是软件工程师。

模型产品化本质上就是指不要在现有的模型输出上停滞不前。你的结果输出是产品的一部分,并且会改变用户的实际体验。

你的代码也会成为更大的产品代码库的一部分,例如,如果你归类用户是否会在未来两周内流失,被预测为会流失的用户和被预测为不会流失的用户可能会有不同的用户界面(UI)。

实际上,你是为其他团队创建了一个API来调用你的模型并获得模型输出。你可能需要重构你的代码,此时,只要API没有中断并且终端用户体验是无缝的,你就可以不断地升级模型。

Becky自学了工作中要用到的软件工程方面的知识,学会使代码模块化,以实现可重复性并提高算法效率。甚至有时,可能会参与到软件工程师或是数据工程师的团队中。这不仅取决于工作的复杂性,还取决于服务等级协议(Service Level Agreement, SLA)。例如,如果你的API需要一直处于运行状态,则可能需要更广泛的代码审查或软件工程团队的直接参与。

沟通与问题解决

在讲述了数据科学项目的构建之后,Becky更多地谈到了有效沟通和解决问题的技巧的重要性。如何向非技术人员的利益相关者们解释复杂的数据科学概念,是获得他们买进支持的重要环节。

Becky将她在攻读物理学博士学位期间学会的一项技能运用于此——将复杂问题分解成小块并逐一解决。类似地,她就将利益相关者的高阶问题(high level question)进行分解,并找出数据科学项目可以提供价值的地方。

如果没有数据科学家的工作经验,想要胜任这部分工作是不容易的,因为包括Kaggle项目在内的大多数实践项目都是从已经定义明确的数据科学问题开始的。Becky谈到,这些软技能其实是从经验中获得的,当然也可以从有效的反馈中学习。

与此同时,她也会阅读一些基础书籍来熟悉商业中的通用概念和术语。另外,许多其他资深的数据科学家们都建议,如果想要进一步发展自己的商业头脑,则需要阅读一些产品管理的书籍和文章。

实践练习

这个项目使用WDI数据来预测业务启动成本,非常适合初学者。如果你是机器学习新人,或是刚刚完成一些监督学习的网络基础课程,这将会是一个很好的额外练习机会。

现在,让我们回到之前谈论的问题解决和沟通方面,Becky就此提出了一个业务问题:“在不同的国家开展业务都有多难?”她还确立了一个项目目标,即预测在不同国家开展业务的成本。

如果这是一个实际的工作项目,对于开展业务的便利性来说,这些预测成本要如何成为整体评估决策中的一部分,我想,她可能需要与利益相关者就此问题达成一致。

最后,希望这个总结对你有帮助。祝所有数据科学爱好者们好运!并再次感谢Netflix团队的慷慨分享!另有演示的幻灯片和录像可供使用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8408

    浏览量

    132580
  • 数据科学
    +关注

    关注

    0

    文章

    165

    浏览量

    10053

原文标题:如何成为一名数据科学家?听听来自Netfix的老司机怎么说

文章出处:【微信号:szwlw26059696,微信公众号:物联网之声】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AI干货补给站04 | 工业AI视觉检测项目实施第三步:模型构建

    AI视觉检测项目入门指南》系列文章。该系列文章将AI视觉检测项目的实施过程细分为制定计划、数据收集、模型构建以及工厂验收四个阶段,旨在通过分享各阶段的实施经验与注意
    的头像 发表于 11-29 01:04 177次阅读
    AI干货补给站04 | 工业AI视觉检测<b class='flag-5'>项目</b>实施第三步:模型<b class='flag-5'>构建</b>

    数据要素时代下构建高效数据治理能力的策略

    数据驱动的商业时代,高效数据治理平台已成为企业成功的核心要素。尽管市场上已有众多成熟的数据治理产品,但许多客户仍反映未能充分实现数据治理
    的头像 发表于 11-01 11:19 300次阅读

    使用Python构建高效的HTTP代理服务器

    构建一个高效的HTTP代理服务器在Python中涉及多个方面,包括性能优化、并发处理、协议支持(HTTP/HTTPS)、错误处理以及日志记录等。
    的头像 发表于 10-23 07:41 158次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。 其次,第6章通过多个案例展示了人工智能在能源
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这一章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这一章详细阐述了人工智能如何通过其强大的数据处理和分析
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不仅极大地提高了
    发表于 10-14 09:12

    GaN如何实现更高效、更紧凑的电源

    电子发烧友网站提供《GaN如何实现更高效、更紧凑的电源.pdf》资料免费下载
    发表于 09-12 10:00 0次下载
    GaN如何实现<b class='flag-5'>更高效</b>、更紧凑的电源

    这样设计SD/TF卡的PCB更高效、更可靠!

    ,TF和SD卡都采用了SD协议,但是它们的接口有所不同。 TF卡只有一根地线,而SD卡则有两根地线 。这使得SD卡在接口上比TF卡更为复杂,但是也提供了更高数据传输速度和更强的兼容性。 此外,SD卡
    发表于 09-03 17:01

    如何使用PyTorch构建更高效的人工智能

    术界和工业界得到了广泛应用。本文将深入探讨如何使用PyTorch构建更高效的人工智能系统,从框架基础、模型训练、实战应用等多个方面进行详细解析。
    的头像 发表于 07-02 13:12 374次阅读

    求助,通过VScode构建的集成开发环境如何更新环境下的ESP-IDF版本?

    通过VScode构建的集成开发环境如何 更新 环境下的ESP-IDF版本? 通过VScode 构建开发环境的时候其中的esp-idf版本 也会被下载到本地.如何才能对这个版本进行更新呢.比如我现在
    发表于 06-17 06:38

    交换芯片的构建原理

    交换芯片的构建原理涉及复杂的电子工程、计算机科学和通信原理。这种芯片作为网络通信中的关键组件,其构建原理主要基于对数据信号的高效处理与转发。
    的头像 发表于 03-22 16:21 507次阅读

    数据赋能:构建数据治理与AI的协同闭环

    在数字化浪潮中,数据已成为企业的新型燃料,而AI则是提炼这种燃料的精炼厂。数据治理与AI的协同作用,正在引领企业迈向更智能、更高效的未来。本文将展示企业如何通过将数据治理与AI技术相结
    的头像 发表于 03-15 10:47 483次阅读

    为外部GCC配置ADS构建项目时出错怎么解决?

    我已经为外部GCC配置了ADS来构建项目,我正在使用Gcc编译器。 当我使用此配置进行构建时,它给出了错误,我附加了错误快照,我使用“-mtc18”检查了配置及其默认值,我们如何 CAN 更改此配置。 此配置是为使用具有相同芯片
    发表于 01-30 06:29

    构建高效数据生态:数据库、数据仓库、数据湖、大数据平台与数据中台解析_光点科技

    在数字化的浪潮中,一套高效数据管理系统是企业竞争力的核心。从传统的数据库到现代的数据中台,每一种技术都在数据的旅程中扮演着关键角色。本文将
    的头像 发表于 01-17 10:20 369次阅读

    构建异地企业网络互联的高效路径

    在当今数字化浪潮中,企业的业务拓展已不再受限于地理位置。为了在全球竞争中立于不败之地,越来越多的企业选择在不同城市设立分支机构,构建异地网络,实现高效的协同办公。本文将深入探讨在北上广等经济发达地区
    的头像 发表于 01-05 16:15 460次阅读