0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

根据需要在两个量子位之间放置“远距传送”的量子门

DPVg_AI_era 来源:未知 作者:李倩 2018-09-08 08:57 次阅读

耶鲁大学研究人员发现了构建模块化量子计算机架构的关键步骤之一:在两个量子位之间实现量子门的“传送”,而非依赖任何直接的相互作用。量子门是单量子系统网络计算中必不可少的架构,研究人员认为该架构有望消除量子计算处理器中的固有错误。

耶鲁大学的研究人员发现,构建模块化量子计算机架构的关键步骤之一:根据需要在两个量子位之间放置“远距传送”的量子门。

该研究成果发表在9月5日《自然》期刊网络版上。

这项新研究背后的关键就是量子传送,这是量子力学的一个独有特征,人们过去曾将其用于在通信双方之间传输未知的量子态,而无需真正发送状态本身。

耶鲁大学的研究人员通过实验,使用上世纪90年代的理论证明了在两个量子位之间实现量子门的“传送”,是构建未来量子计算机架构的关键步骤之一,而非依赖于任何直接的相互作用。

这种量子门是基于单量子系统网络的量子计算所必需的架构。许多研究人员认为,这种架构可以抵消量子计算处理器中的固有错误。

该研究中模块化量子结构的网络示意图

由耶鲁大学量子研究所首席研究员Robert Schoelkopf和他的学生Kevin Chou等人组成的研究团队正在研究量子计算的模块化方法。

研究人员表示,从最新的SpaceX公司的火箭中的生物细胞组织,到移动网络等各个行业,都可以应用这种方法。模块化方法已被证明是构建大型复杂系统的有效策略。

量子模块化体系结构由一组模块组成,这些模块可供连接到更大型网络中的小型量子处理器使用。

这一体系结构中的模块彼此之间处于自然隔离状态,从而简化了通过大型系统带来的不必要的交互过程。研究人员表示,这种隔离状态也让模块间操作成为一项独特的挑战。而传送则是实现模块间操作的一种方式。

确定性的量子传送CNOT门示意图

量子计算机的计算速度有可能比现有的超级计算机快几个数量级。现在,耶鲁大学的研究人员处于开发第一批完全可用的量子计算机的前沿阶段,并在超导电路的量子计算方面做出了开创性的工作。

量子计算是通过名为“量子位”的精细数据位完成的,这些数据很容易出错。在实验性的量子系统中,“逻辑”量子位由“辅助”量子位监视,以便立即检测和纠正错误。 “我们的实验也是逻辑量子位之间两量子位运算的首次演示,”Schoelkopf表示。 “这是使用可纠错的量子位进行量子信息处理的一个里程碑。”

此研究发表在9月5日的《自然》期刊网络版上

论文摘要

量子计算机有可能有效地解决传统计算机难以处理的问题。然而,由于现实世界量子系统中固有的误差和噪声,构建大规模量子处理器的挑战性很高。

解决这一挑战的一种方法是利用模块化策略,这是一种在自然界和工程领域中构建复杂系统时经常使用的策略。模块化方法将小型专用组件组装到更大的架构中,来管理复杂性和不确定性都很高的系统。

这推动了量子模块化架构的发展,在模块化量子架构中,单独的量子系统可以通过信道连接到量子网络中。在这种架构中,通用量子计算的基本工具是纠缠量子门的“传送”,但迄今为止,这种远距离传送还没有被实现为确定性操作。

现在,研究人员通过实验传送了CNOT门,使用实时自适应控制将传送操作确定下来。此外,我们在两个逻辑量子位之间设置量子门,在超导腔的状态下冗余编码量子信息,朝着实现稳健、可纠错的模块化迈出了关键一步。

通过这种可纠错编码,我们的传送量子门实现了79%的过程保真度。传送量子门对容错量子计算起着重大作用,在网络中实现时,可以在量子通信,计量和模拟中具有广泛的应用。

如果模块化量子门传送可以和量子纠错协议进行集成,那么模块化量子架构可能成为未来可容错量子计算的很有前途的方法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    19135

    浏览量

    228954
  • 移动网络
    +关注

    关注

    2

    文章

    444

    浏览量

    32803
  • 量子计算机
    +关注

    关注

    4

    文章

    523

    浏览量

    25358

原文标题:量子计算新突破!耶鲁科学家把量子门“传送”了

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    量子计算的瓶颈在于数据的装载,而不是数据的计算。也就是说,装载数据远远超过了数据计算的时间消耗。 作者提到了目前量子芯片的两个前进方向:1. 改善量子比特自身的品质 2.准备大量的
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    利用的是量子的叠加态,即同时拥有0和1两个信息,而传统比特要不是1要不是0。这样两个传统bit有4种情况,遍历需要4次计算才能得到所有结果,而量子
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    状态称为叠加态。例如,一量子比特可以同时处于0和1种状态,但这种科普层级的解释还是让我犯迷糊,终究没搞明白什么是叠加态,量子比特是如何使用叠加特性进行快速计算的? 翻阅《
    发表于 03-13 17:19

    量子

    具有一些特殊的性质,如叠加和纠缠,使得量子计算机能够在某些情况下比传统计算机更高效地解决某些问题。 量子计算机的一重要应用领域是密码学。传统计算机在破解当前常用的加密算法时需要耗费
    发表于 03-13 18:18

    【《计算》阅读体验】量子计算

    测量前可能处于叠加态,这是量子力学既令人难以理解又威力无穷的地方。由于量子具有波粒二象性,因此可以把量子描述为一波函数,测量前处于看加态的波函数,测量后将坍缩为本征态。
    发表于 07-13 22:15

    中科大成功研制出百毫秒级高效量子存储器

    ,通过对光子比特进行缓存,可大幅提升纠缠连接效率。为满足远距量子中继的实际需求,量子存储器需要对单量子态进行长时间存储且具备高读出效率。 
    发表于 06-03 18:14

    专访阿里巴巴量子实验室:最强量子电路模拟器“太章”到底强在哪?

    是用一种经典、我们能理解的方式来理解量子的运行,就和太章徒步测量东极至西极的距离类似。云栖社区:81比特40层,这两个数据意味着什么?为何是81比特和40层?陈建鑫:我们实现该模拟器的目的是为了以后
    发表于 05-23 11:18

    什么是“量子自旋霍尔效应”?

    。但由于这种效应需要满足强磁场和低温这两个条件,类似的装置仍旧是一白日梦。然而,物理学家还是相当幸运的,除了带有电荷外,电子还拥有另一特性--旋转。最近一些年,理论家便预言,拥有正
    发表于 12-13 16:40

    超导量子芯片有哪些优势?

    芯片采用2量子状态来叠加及纠缠,用以执行以量子比特为基础的运算,因此只要物质的物理性质具有两个易于操作的量子态,都有可能成为
    发表于 12-02 14:13

    32量子虚拟机是如何助力量子编程快速实现的?

    32量子虚拟机有什么功能?32量子虚拟机是如何助力量子编程快速实现的?
    发表于 06-17 10:42

    量子啥?量子计算机有啥用?

    写在前面此文觉得非常有逻辑性,而且有很多量子计算方面的常识介绍。大部分资料都是网络公开的,这里做了一汇集。因此,转发到博客里。文章目录(一)量子啥?(二)各种
    发表于 07-27 07:19

    高质量的双量子比特操作

    的保真度(Fidelity)就会受到影响。因此,需要有一低错误率,且易于扩展的双量子比特方案就成了关键。近日,南方科技大学
    发表于 07-29 08:48

    QICK 硬件旨在弥合经典和量子通信差距

    ) ,它们可以同时占据两个状态,直到观察到或完成特定的计算。本文主要介绍费米实验室最新研发的量子计算的控制方面,旨在通过标准化的量子比特控制仪器降低量子计算基础设施的成本。读取和操纵
    发表于 06-16 14:39

    首次实现了25量子接口之间量子纠缠

    量子网络将能按需产生任何两个用户之间的纠缠,这将涉及通过光纤网络和卫星链路发送光子。不过,将相隔很远的用户连接起来需要一种能扩展纠缠范围的技术——能沿着中间点在用户间转送。
    的头像 发表于 06-06 16:32 6228次阅读
    首次实现了25<b class='flag-5'>个</b><b class='flag-5'>量子</b>接口<b class='flag-5'>之间</b>的<b class='flag-5'>量子</b>纠缠

    量子如何根据需要生成支持量子处理器之间通信所需的光子

    产生光子的新型波导量子电动力学体系结构表明,量子可以充当波导的量子发射器。研究人员进一步证明,发射到波导中的光子之间
    的头像 发表于 10-23 14:53 2026次阅读