0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

面向机器学习的神经网络突变算法

DPVg_AI_era 来源:未知 作者:李倩 2018-09-08 09:07 次阅读

为特定任务寻找最合适的优化机器学习算法是一件耗时费力的工作,因为没有一种算法能适用于所有任务。IBM的研究人员提出“神经突变”进化算法,可以为机器学习任务自动选择最合适的算法,选择速度提升了50000倍,错误率仅上升0.6%.

机器学习系统并非是“生而平等”的。没有一种算法能应对所有的机器学习任务,这就让寻找最优的机器学习算法成为一项艰巨又耗时的工作。不过这个问题现在有希望解决了,最近IBM的研究人员开发了一套能够自动选择AI优化算法的系统。

IBM爱尔兰研究院的数据科学家Martin Wistuba,在其近日发表的博客文章中介绍了自己开发的这套系统。他声称,该系统将自动选择优化AI算法的速度提升了5万倍,错误率仅上升了0.6%。

Wistuba表示,这套进化算法系统能将选择适当的机器学习架构的时间缩减至几个小时,让每个人都能有条件对深度学习网络架构进行优化。

面向机器学习的神经网络突变算法

该方法将卷积神经网络架构视为神经细胞序列,然后应用一系列突变,以找到一种结构,可以提升给定数据集和机器学习任务的神经网络的性能。

这种方法大大缩短了网络训练时间。这些突变会改变网络结构,但不会改变网络的预测,网络的结构变化可能包括添加新的层、添加新连接或扩展内核或现有层。

保留原函数的神经网络突变示例。右侧的体系结构是突变后的网络,但与左侧的体系结构具有相同的预测结果(由相同颜色表示)

实验评估:速度提升5万倍,错误率仅上升0.6%

实验中,研究人员将新神经进化方法与CIFAR-10和CIFAR-100数据集上的图像分类任务的其他几种方法进行了比较。这些数据集通常用于训练机器学习和计算机视觉算法的图像集。

与最先进的人工设计架构、基于强化学习的架构搜索方法、以及基于进化算法的其他自动化方法的结果相比,结构突变算法在分类错误上稍高出前几种方法,但耗时要少得多,比其他方法快了50000倍,错误率最多仅比基准数据集CIFAR-10上的最有力竞争对手高出0.6%。

下图所示为算法的优化过程。在图2中,每个点代表不同的结构,连接线代表突变。不同颜色所示为每个结构的精度,x轴表示时间。可以看到,准确率在前10个小时内迅速上升,之后缓慢上升、最后趋于稳定。

深度学习网络设计的进化算法优化

图示为随时间推移,进化算法的优化过程

下图所示为随着时间的推移,深度学习网络结构的演变情况。

网络结构随时间的演变,图中某些中间状态未显示

实际上,自动算法选择并不新鲜。谷歌在智能手机面部识别和目标检测上也在使用这类方法,如果IBM这一的系统性能确实如其所言,它可能代表着该领域内的一次重大进步。

将来,研究人员希望将这种优化集成到IBM的云服务中,并将其提供给客户。此外还计划将其扩展到更大的数据集上,如ImageNet和其他类型的数据,如时间序列和文本、自然语言处理任务等。

Wistuba将于9月在爱尔兰都柏林举行的欧洲机器学习和数据库知识发现会议(ECML-PKDD)会议上介绍这种方法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100539
  • 机器学习
    +关注

    关注

    66

    文章

    8377

    浏览量

    132409
  • 数据集
    +关注

    关注

    4

    文章

    1205

    浏览量

    24643

原文标题:神经网络突变自动选择AI优化算法,速度提升50000倍!

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    神经网络教程(李亚非)

    神经元  第3章 EBP网络(反向传播算法)  3.1 含隐层的前馈网络学习规则  3.2 Sigmoid激发函数下的BP
    发表于 03-20 11:32

    分享机器学习卷积神经网络的工作流程和相关操作

    机器学习算法篇--卷积神经网络基础(Convolutional Neural Network)
    发表于 02-14 16:37

    神经网络资料

    基于深度学习神经网络算法
    发表于 05-16 17:25

    机器学习神经网络参数的代价函数

    吴恩达机器学习笔记之神经网络参数的反向传播算法
    发表于 05-22 15:11

    【案例分享】基于BP算法的前馈神经网络

    }或o koko_{k})的误差神经元偏倚的变化量:ΔΘ ΔΘ Delta Theta=学习步长η ηeta × ×imes 乘以神经元的误差BP神经网络
    发表于 07-21 04:00

    神经网络和反向传播算法

    03_深度学习入门_神经网络和反向传播算法
    发表于 09-12 07:08

    反馈神经网络算法是什么

    反馈神经网络算法
    发表于 04-28 08:36

    卷积神经网络简介:什么是机器学习

    抽象人工智能 (AI) 的世界正在迅速发展,人工智能越来越多地支持以前无法实现或非常难以实现的应用程序。本系列文章解释了卷积神经网络 (CNN) 及其在 AI 系统中机器学习中的重要性。CNN 是从
    发表于 02-23 20:11

    BP神经网络模型与学习算法

    BP神经网络模型与学习算法
    发表于 09-08 09:42 10次下载
    BP<b class='flag-5'>神经网络</b>模型与<b class='flag-5'>学习</b><b class='flag-5'>算法</b>

    为什么使用机器学习神经网络以及需要了解的八种神经网络结构

    机器学习已经在各个行业得到了大规模的广泛应用,并为提升业务流程的效率、提高生产率做出了极大的贡献。这篇文章主要介绍了机器学习中最先进的算法
    的头像 发表于 01-10 16:30 1.2w次阅读
    为什么使用<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>神经网络</b>以及需要了解的八种<b class='flag-5'>神经网络</b>结构

    基于脉冲神经网络的迁移学习算法

    使用脉冲序列进行数据处理的脉冲神经网络具有优异的低功耗特性,但由于学习算法不成熟,多层网络练存在收敛困难的问题。利用反向传播网络具有
    发表于 05-24 16:03 15次下载

    什么是神经网络?什么是卷积神经网络

    在介绍卷积神经网络之前,我们先回顾一下神经网络的基本知识。就目前而言,神经网络是深度学习算法的核心,我们所熟知的很多深度
    的头像 发表于 02-23 09:14 3352次阅读

    卷积神经网络的介绍 什么是卷积神经网络算法

    的深度学习算法。CNN模型最早被提出是为了处理图像,其模型结构中包含卷积层、池化层和全连接层等关键技术,经过多个卷积层和池化层的处理,CNN可以提取出图像中的特征信息,从而对图像进行分类。 一、卷积神经网络
    的头像 发表于 08-21 16:49 1823次阅读

    卷积神经网络算法机器算法

    卷积神经网络算法机器算法吗  卷积神经网络算法机器
    的头像 发表于 08-21 16:49 819次阅读

    神经网络算法的优缺点有哪些

    神经网络算法是一种模拟人脑神经元结构的计算模型,广泛应用于机器学习、深度学习、图像识别、语音识别
    的头像 发表于 07-03 09:47 1125次阅读