0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PageRank算法所建立的模型

lviY_AI_shequ 来源:未知 作者:李倩 2018-09-12 16:17 次阅读

引言

PageRank是Sergey Brin与Larry Page于1998年在WWW7会议上提出来的,用来解决链接分析中网页排名的问题。在衡量一个网页的排名,直觉告诉我们:

当一个网页被更多网页所链接时,其排名会越靠前;

排名高的网页应具有更大的表决权,即当一个网页被排名高的网页所链接时,其重要性也应对应提高。

对于这两个直觉,PageRank算法所建立的模型非常简单:一个网页的排名等于所有链接到该网页的网页的加权排名之和:

表示i个网页的PageRank值,用以衡量每一个网页的排名;若排名越高,则其PageRank值越大。网页之间的链接关系可以表示成一个有向图,边代表了网页j链接到了网页i;为网页j的出度,也可看作网页j的外链数( the number of out-links)。

假定为n维PageRank值向量,A为有向图G所对应的转移矩阵,

n个等式(1)改写为矩阵相乘:

但是,为了获得某个网页的排名,而需要知道其他网页的排名,这不就等同于“是先有鸡还是先有蛋”的问题了么?幸运的是,PageRank采用power iteration方法破解了这个问题怪圈。欲知详情,请看下节分解。

求解

为了对上述及以下求解过程有个直观的了解,我们先来看一个例子,网页链接关系图如下图所示:

那么,矩阵A即为

所谓power iteration,是指先给定一个P的初始值,然后通过多轮迭代求解:

最后收敛于,即差别小于某个阈值。我们发现式子(2)为一个特征方程(characteristic equation),并且解P是当特征值(eigenvalue)为1时的特征向量(eigenvector)。为了满足(2)是有解的,则矩阵AA应满足如下三个性质:

stochastic matrix,则行至少存在一个非零值,即必须存在一个外链接(没有外链接的网页被称为dangling pages);

不可约(irreducible),即矩阵A所对应的有向图G必须是强连通的,对于任意两个节点u,v∈V,存在一个从u到v的路径;

非周期性(aperiodic),即每个节点存在自回路。

显然,一般情况下矩阵A这三个性质均不满足。为了满足性质stochastic matrix,可以把全为0的行替换为e/ne/n,其中e为单位向量;同时为了满足性质不可约、非周期,需要做平滑处理:

其中,d为 damping factor,常置为0与1之间的一个常数;E为单位阵。那么,式子(1)被改写为

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4615

    浏览量

    92992
  • PageRank
    +关注

    关注

    0

    文章

    5

    浏览量

    6670

原文标题:【十大经典数据挖掘算法】PageRank

文章出处:【微信号:AI_shequ,微信公众号:人工智能爱好者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【「大模型启示录」阅读体验】对大模型更深入的认知

    内容让我对大模型技术的发展有了更全面的认识。我意识到,大模型不仅仅是一些算法和代码的堆砌,它们背后有着深刻的科技变革和产业竞争。 书中对大模型与不同行业结合的讨论,更是让我眼前一亮。我
    发表于 12-20 15:46

    黑芝麻智能端到端算法参考模型公布

    黑芝麻智能计划推出支持华山及武当系列芯片的端到端算法参考方案。该方案采用One Model架构,并在决策规划单元引入了VLM视觉语言大模型和PRR行车规则的概率化表征子模块,进一步提升了智驾系统的决策规划能力。
    的头像 发表于 12-03 12:30 317次阅读
    黑芝麻智能端到端<b class='flag-5'>算法</b>参考<b class='flag-5'>模型</b>公布

    介绍FIR滤波模型建立,分4个步骤

    本帖介绍FIR滤波模型建立,分以下几个步骤: 选定滤波结构:低通、高通、带通、带阻; 选定合适的窗函数,常见的有hamming、hanning、blackman、ExactBlackman
    发表于 09-04 09:08

    请问如何建立XTR110KU的Spice模型

    怎么建立XTR110KU的Spice模型
    发表于 09-02 06:11

    请问如何建立MOS或IGBT模型到TINA TI使用?

    请问如何建立MOS或IGBT模型到TINA TI使用
    发表于 08-14 06:21

    计算机视觉技术的AI算法模型

    计算机视觉技术作为人工智能领域的一个重要分支,旨在使计算机能够像人类一样理解和解释图像及视频中的信息。为了实现这一目标,计算机视觉技术依赖于多种先进的AI算法模型。以下将详细介绍几种常见的计算机视觉
    的头像 发表于 07-24 12:46 898次阅读

    科沃斯机器人大模型算法通过国家备案

    在智能科技日新月异的今天,科沃斯家用机器人有限公司再次站在了行业创新的前沿。近日,该公司自主研发的“科沃斯机器人大模型算法”成功通过国家网信办的深度合成服务算法备案,这一里程碑式的成就不仅标志着科沃斯在技术创新上的卓越实力,更意
    的头像 发表于 07-23 16:42 734次阅读

    AI算法/模型/框架/模型库的含义、区别与联系

    在人工智能(Artificial Intelligence,简称AI)的广阔领域中,算法模型、框架和模型库是构成其技术生态的重要基石。它们各自承担着不同的角色,但又紧密相连,共同推动着AI技术的不断发展。以下是对这四者含义、区
    的头像 发表于 07-17 17:11 4050次阅读

    ai大模型算法有什么区别

    AI大模型算法是人工智能领域的两个重要概念,它们在很多方面有着密切的联系,但同时也存在一些明显的区别。 定义和概念 AI大模型通常是指具有大量参数和复杂结构的人工智能模型,它们能够处
    的头像 发表于 07-16 10:09 1891次阅读

    AI大模型与小模型的优缺点

    在人工智能(AI)的广阔领域中,模型作为算法与数据之间的桥梁,扮演着至关重要的角色。根据模型的大小和复杂度,我们可以将其大致分为AI大模型和小模型
    的头像 发表于 07-10 10:39 2808次阅读

    如何使用PyTorch建立网络模型

    PyTorch是一个基于Python的开源机器学习库,因其易用性、灵活性和强大的动态图特性,在深度学习领域得到了广泛应用。本文将从PyTorch的基本概念、网络模型构建、优化方法、实际应用等多个方面,深入探讨使用PyTorch建立网络
    的头像 发表于 07-02 14:08 424次阅读

    基于神经网络算法模型构建方法

    神经网络是一种强大的机器学习算法,广泛应用于各种领域,如图像识别、自然语言处理、语音识别等。本文详细介绍了基于神经网络算法模型构建方法,包括数据预处理、网络结构设计、训练过程优化、模型
    的头像 发表于 07-02 11:21 563次阅读

    建立神经网络模型的三个步骤

    建立神经网络模型是一个复杂的过程,涉及到多个步骤和细节。以下是对建立神经网络模型的三个主要步骤的介绍: 第一步:数据准备 1.1 数据收集 数据是神经网络的基础。首先,你需要收集足够的
    的头像 发表于 07-02 11:20 985次阅读

    深度学习模型训练过程详解

    深度学习模型训练是一个复杂且关键的过程,它涉及大量的数据、计算资源和精心设计的算法。训练一个深度学习模型,本质上是通过优化算法调整模型参数,
    的头像 发表于 07-01 16:13 1313次阅读

    数据语料库、算法框架和算力芯片在AI大模型中的作用和影响

    数据语料库、算法框架和算力芯片的确是影响AI大模型发展的三大重要因素。
    的头像 发表于 03-01 09:42 1135次阅读