0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探讨自动驾驶汽车所需的计算处理能力

ml8z_IV_Technol 来源:未知 作者:胡薇 2018-09-15 10:29 次阅读

行业专家已经为自动驾驶的发展定义了五个级别。 每个级别分别描述了汽车从驾驶员那里接管各项任务和责任的程度,以及汽车和驾驶员之间如何互动。在自动驾驶的每个级别上,应对所有数据所需的处理能力随级别的提升而迅速增加。根据经验,可以预计从一个级别到下一个级别的数据处理量将增加10倍。 对于完全自动驾驶的第4级和第5级,我们将看到数十万亿次浮点运算的处理量。本文将从传感器、摄像头,神经网络等角度介绍自动驾驶所需的处理能力。

在未来20 - 30年中,自动驾驶汽车(AV)将改变我们的驾驶习惯、运输行业并更广泛地影响社会。 我们不仅能够将汽车召唤到我们的家门口并在使用后将其送走,自动驾驶汽车还将挑战个人拥有汽车的想法,并对环境和拥堵产生积极影响。市场调研公司ABI Research预测:到2030年,道路上四分之一的汽车将会是自动驾驶汽车。

行业专家已经为自动驾驶的发展定义了五个级别。每个级别分别描述了汽车从驾驶员那里接管各项任务和责任的程度,以及汽车和驾驶员之间如何互动。诸如自适应巡航控制这类功能是先进驾驶员辅助系统(ADAS)的示例,并且可以被认为是第1级的能力。目前,市场上出现的一些新车正在实现第2级功能;但作为一个行业,我们仅仅是才触及ADAS系统的表面,更不用说完全自主驾驶了。

示意图:自动驾驶的五个级别

自动驾驶的级别

当我们去逐级实现自动驾驶的不同级别时,处理能力对于实现完全自动化这一愿景至关重要,此时驾驶员可以“放开方向盘、移开目光和放飞心灵”。在这个级别上,车内的人只是乘客;同时因为没有司机,所以也不需要方向盘。然而,在我们实现该目标之前,我们应该首先了解从非自动驾驶到完全自动驾驶之间的各种级别。

ADAS/AV有三个主要元素:传感、计算和执行。

用感知去捕捉车辆周围环境的现状。这是靠使用一组传感器来完成的:雷达(长距离和中距离),激光雷达(长距离),摄像头(短距离/中距离),以及红外线和超声波。这些“感官”中的每一种都能捕捉到它所“看到”的周围环境的变体。它在此视图中定位感兴趣的和重要的对象,例如汽车、行人、道路标识、动物和道路拐弯。

示意图:汽车从激光雷达、雷达和摄像头中看到的视图

计算阶段是决策阶段。在这个阶段中,来自这些不同视图的信息被拼合在一起,以更好地理解汽车“看到”的内容。例如,场景中到底发生了什么?移动物体在哪里?预计的动作是什么?以及汽车应该采取哪些修正措施?是否需要制动和/或是否需要转入另一条车道以确保安全?

执行即最后阶段是汽车应用这一决策并采取行动,汽车可能会取代驾驶员。它可能是制动、加速或转向更安全的路径;这可能是因为驾驶员没有注意到警告,及时采取行动并且即将发生碰撞,或者它可能是完全自主系统的标准操作。

第2级实际上是ADAS路径的起点,其中可能在安全解决方案包中制定多种单独的功能,例如自动紧急制动、车道偏离警告或辅助保持在车道中行驶。

第3级是诸如2018款奥迪A8等目前已量产汽车的最前沿,这意味着驾驶员可以“移开目光”一段时间,但必须能够在出现问题时立即接管。

第4级和第5级两者都可提供基本上是完全的自动驾驶。它们之间的区别在于:第4级驾驶将限于诸如主要高速公路和智慧城市这样的具有地理缓冲的区域,因为它们会重度依靠路边的基础设施来维持其所在位置的毫米级精度画面。

第5级车辆将可在任何地点实现自动驾驶。在这个级别,汽车甚至可能没有方向盘,并且座椅可以不是都面向前方。

自动驾驶所需的处理能力

在自动驾驶的每个级别上,应对所有数据所需的处理能力随级别的提升而迅速增加。根据经验,可以预计从一个级别到下一个级别的数据处理量将增加10倍。 对于完全自动驾驶的第4级和第5级,我们将看到数十万亿次浮点运算的处理量。

从传感器的角度来看,下表为您提供了其需求量的一个指引。第4级和第5级将需要多达八个摄像头,尽管人们甚至已经提出了需要更高的摄像头数量。 图像捕获装置的分辨率为2百万像素,帧速为30-60帧/秒,所以要实时处理所有这些信息是一项巨大的处理任务。对于车上的雷达,其数量可能需要多达10台以上,这是因为需要在22GHz和77GHz之间搭配使用短距离、中距离和长距离(100m 以上)的雷达。即使在第2级,仍然需要对从摄像头和雷达捕获的数据进行大量处理。

示意图:自动驾驶和应用的不同级别

对于处理能力,我们将关注摄像头需要做什么,这是因为它与前置雷达一起是支撑诸如在特斯拉中使用的自动驾驶仪的主要传感器。

摄像头系统通常是广角单摄或立体双摄,在车上呈前向或以环绕视场(360°)配置。与雷达和激光雷达不同,摄像头感应设备取决于处理输入的软件的功能;摄像头的分辨率很重要,但没有达到你想象的程度。

为简化处理过程,我们使用了一种被称为卷积神经网络(CNN)的重要算法。CNN是从摄像头源中提取和分辨信息的一种高度专业化和高效的方法。

在我们的汽车案例中,它从摄像头获取输入并识别车道标记、障碍物和动物等。CNN不仅能够完成雷达和激光雷达所能做的所有事情,而且能够在更多方面发挥作用,例如阅读交通标识、检测交通灯信号和道路的组成等。事实上,某些一级供应商(Tier 1)和汽车原始设备制造商(OEM)正在研究通过摄像头和雷达组合来降低成本。

CNN将机器学习的元素带入汽车。神经网络的结构都普遍基于我们自己大脑的连线结构。人们首先必须选择想要实现的网络类型,以及其按照层数来决定的深度。 每层实际上是前一层和后一层之间的一组互连节点。为了实现神经网络,大量的智能训练数据将被应用于它;这是一种高度计算密集型的操作,大多数情况下是离线进行的。对于诸如一种道路情况的图像和视频这样的每一次通过,网络通过调整各层内的相关因素来进行学习。当训练数据通过它时,这些相关因素可以从数百万次数据分析中得到提升。 一旦完成训练,就可以将网络和相关因素加载到诸如CPUGPU计算或特定CNN加速器之类的结构中。

这种类型的算法和网络的优点之一是它可以用更新的或更好的相关因素去升级,因此它总是在不断改进。经过广泛的比较,我们发现在GPU计算模式上运行的CNN比在当前高端嵌入式多核CPU上快20倍且功耗也低得多。同样,伴随着CNN向硬件加速方向发展,我们也已看到性能还可进一步提高20倍,而且在功耗上也可进一步改善。

展望未来

随着我们走向采用无人驾驶汽车的未来,所需的计算能力将随着传感器的数量、帧速和分辨率而扩展。从性能和功率两个角度来看,卷积神经网络正在成为解释图像数据的最有效方式。这将引领在网络的边缘放置更多处理资源的趋势,例如在汽车案例中,计算资源是在汽车自身内部,而不是将该处理能力卸载到云并且依赖于始终在线的蜂窝连接。对于那些提供处理能力、算法和训练数据的人来说,自动驾驶潜藏着巨大的机会并将成为现实。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • adas
    +关注

    关注

    309

    文章

    2183

    浏览量

    208629
  • 自动驾驶汽车

    关注

    4

    文章

    376

    浏览量

    40829

原文标题:自动驾驶汽车所需的计算处理能力

文章出处:【微信号:IV_Technology,微信公众号:智车科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    FPGA在自动驾驶领域有哪些应用?

    的数据处理和预处理,实现实时计算和反馈。 二、数据传输与处理FPGA在自动驾驶中扮演着数据传输和处理
    发表于 07-29 17:09

    谷歌的自动驾驶汽车是酱紫实现的吗?

    看到新闻报道说谷歌自动驾驶汽车已经行驶近30万公里了,非常的强大~~上次参加了重庆新能源汽车峰会,对会上富士通半导体宣讲的一款全景视频汽车实时监控技术平台似乎看到了
    发表于 06-14 16:15

    汽车自动驾驶技术

    请问各位老鸟我是新手汽车自动驾驶技术是怎么回事,是用什么板子开发的需要应用哪些技术和知识。提问题提得不是很好请各位见谅
    发表于 04-14 20:44

    自动驾驶真的会来吗?

    自动驾驶面临的主要挑战是基于图像的机器学习能力。  理论上,基于图像的机器学习可以让汽车实现自动驾驶,但在实际技术发展方面,仍有很多问题无法解决。例如现在特斯拉的辅助
    发表于 07-21 09:00

    细说关于自动驾驶那些事儿

    越来越便宜和普及,让自动驾驶车终能成形。拆解自动驾驶技术Toyota研究机构负责人Gill Pratt列出几点和无人车相关的技术。首先是智能手机,其相关技术、低电压计算处理器、
    发表于 05-15 17:49

    自动驾驶的到来

      传统汽车厂商更趋向于通过技术的不断积累,场景的不断丰富,逐步从辅助驾驶过渡到半自动驾驶,进而在将来最终实现无人驾驶;某些高科技公司则希望通过各种外部传感器实时采集海量数据,
    发表于 06-08 15:25

    AI/自动驾驶领域的巅峰会议—国际AI自动驾驶高峰论坛

    已经渗透到了社会生活的方方面面。人工智能在自动驾驶领域将对整个汽车出行领域产生颠覆性变革。汽车的人工智能技术和数据后端的最新突破使自动驾驶成为可能。深度学习、高级数字助理和动态电子视野
    发表于 09-13 13:59

    高级安全驾驶员辅助系统助力自动驾驶

    ,由于汽车能看,能解读要做什么,并能依此采取行动,因此我们已经有了全部所需的基本模块。如欲查阅有关自动驾驶、机器视觉与异构处理的更多内容,敬请阅读白皮书:通过技术创新让
    发表于 09-14 11:03

    迈向自动驾驶和电动汽车之路研讨会

    了研讨会,探讨“迈向自动驾驶和电动汽车之路”。研讨会吸引了来自联邦、州和当地的交通组织机构等160位参会者。David目前为Eno Center for Transportation (以下简称Eno
    发表于 10-25 09:01

    车联网对自动驾驶的影响

    车联网与智能驾驶车联网和自动驾驶密切相关,很大程度上可以理解为是对自动驾驶高阶版本的增强和补充,通过车与车、车与人、车与交通基础设施、车与网络的互联互通,让对环境已经具备感知能力
    发表于 03-19 06:20

    如何让自动驾驶更加安全?

    、雷达等多种传感器,需要开发者和测绘企业、地图企业一起合作。自动驾驶也离不开无线通信技术和云计算服务。比如智慧城市系统中,交通管理部门、汽车驾驶员可以利用这些技术,实现智能导航,避免
    发表于 05-13 00:26

    自动驾驶汽车处理能力怎么样?

    作在未来20 - 30年中,自动驾驶汽车(AV)将改变我们的驾驶习惯、运输行业并更广泛地影响社会。 我们不仅能够将汽车召唤到我们的家门口并在使用后将其送走,
    发表于 08-07 07:13

    转发:聊聊边缘计算自动驾驶中的应用场景

    5-7 所示。1、边缘计算自动驾驶中的应用场景汽车自动驾驶具有“智慧”和“能力”两层含义。所谓“智慧”是指
    发表于 07-21 14:12

    边缘计算自动驾驶汽车的应用

    有时更快的数据处理是一种奢侈——有时它生死攸关。例如,自动驾驶汽车本质上是一台装有轮子的高性能计算机,它通过大量的传感器来收集数据。为了使得这些车辆能够安全可靠地运行,它们需要立即对周
    发表于 07-12 08:07

    浅析自动驾驶汽车所需计算处理能力

    在未来20—30年中,自动驾驶汽车(AV)将改变我们的驾驶习惯、运输行业并更广泛地影响社会。
    的头像 发表于 09-11 11:12 3125次阅读