0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

疯狂的不只是论文总数,还有学术垄断

电子工程师 来源:未知 作者:李倩 2018-09-16 10:24 次阅读

作为人工智能领域的顶会,已经有 30 年历史的 NIPS 今年以来一直风波不断。先是被爆出 NIPS 2017 出现了性骚扰行为,然后又被 diss 会议名称太色情,需要改名。之后,又有人在网上爆出,一名刚刚毕业的本科生成为大会论文同行评审,立马遭到新一轮的 diss。

不过,大家似乎都是口是心非。NIPS 并没有因此而门前冷落,反而火爆异常。仅仅 11 分 38 秒,NIPS 正会门票就卖光了。不仅如此,今年的 NIPS 收到了 4856 篇论文投稿,比去年的 3240 篇增长了近 50%。本次大会接收的论文总共 1011 篇,去年只有 679 篇,不过接收率倒是维持在 20% 左右。

疯狂的不只是论文总数,还有学术垄断。

IBM 工程师 Inkit Padhi 统计的数据显示,本届 NIPS 大会 Google Research 以 107 篇论文位列第一,几乎占据了接收论文总数的 10%,而去年这个数字还是 60。除此之外,MIT、斯坦福、CMU 等美国名校分别以 68、57、53 的位列前四。

通过下面的两张图可以发现,美国的几大科技公司和几大名校一如既往地占据了本届 NIPS 的半壁江山,相比去年,并没有任何改善的迹象。当然,这也与这些美国机构强大的经济和科研实力有关。

当然,国内的清华大学和腾讯也有不错的表现,其中清华大学共有 21 篇论文被接收,腾讯的 AI Lab 共有 17 篇论文被接收。但是跟美国同行比,还是有很大的差距。

要知道,在 7 月份的 IJCAI 大会上,中国学者获多篇 Distinguished Paper 奖,中国人论文46%,华人一作论文占总接收论文的 65.5%。而且南京大学教授周志华还当选 IJCAI 2021年 程序主席,成为 IJCAI 史上第二位华人大会程序主席。

不过,这并不代表中国没有进步。在 NIPS 2017 上,清华大学还只有 12 篇论文被接收,而腾讯的 AI Lab 也只有 9 篇,今年虽然论文的绝对数量和美国同行还有差距,但增长迅速,未来可期。

与此同时,作为国内机器学习领域的领军人物,南京大学的周志华教授本次也有 5 篇论文被接收。通过这些论文,读者可以一窥目前 AI 领域比较前沿的研究方向。受文章篇幅所限,本文只对这 5 篇论文的摘要进行了介绍,想要详细了解的可以查看完整论文。

1、Unorganized Malicious Attacks Detection

论文作者:Ming Pang · Wei Gao · Min Tao · Zhi-Hua Zhou

论文摘要:在过去十年里,推荐系统领域备受关注。许多攻击检测算法被开发,以便获得更好的推荐系统,其中大部分研究主要是着眼于 shilling attacks。shilling attacks 主要是一类通过相同策略生成大量用户配置文件以提升或降低推荐项目位置的攻击。在本文中,我们考虑了不同攻击方式:无组织的恶意攻击,即攻击者在无组织的情况下单独使用少量的用户配置文件来攻击不同的项目。这种攻击类型在许多实际应用中都非常常见,但对其的相关研究却较少。我们首先将无组织恶意攻击检测构建为矩阵补全问题,并提出无组织恶意攻击的检测方法 (UMA) ,即近似交替分裂增广拉格朗日法。在大量的实验中,我们从理论和实证的角度分别验证了所提方法的有效性。

2、Preference Based Adaptation for Learning Objectives

论文作者:Yao-Xiang Ding · Zhi-Hua Zhou

论文摘要:在许多实际的学习任务中,我们很难直接优化真实的工作指标,也很难选择正确的替代目标。在这种情况下,我们可以基于对真实测量值和目标之间进行弱关系建模,再将目标优化过程融入到循环学习中。在本文,我们研究一种目标自适应的任务,其中学习者通过迭代的方式来适应来自于 oracle 的偏好反馈的真实对象。实验证明,当目标可以进行线性参数化时,该学习问题能够通过利用 bandit model 得到解决。此外,我们还提出了一种基于 DL^2M 算法的新颖采样方法,用于学习优化的参数,其具有较强的理论证明和有效的实践应用。为了避免在每个目标函数更新后都要从头开始学习理论假设,我们进一步提出了一种改进的自适应方法,来有效地将每个预学习的元素假设迁移到当前目标中。我们将以上的方法应用于多层标签学习中,并证明了该方法在各种多标签的工作指标下能够展现出高效的性能。

3、Multi-Layered Gradient Boosting Decision Trees

论文作者:Ji Feng · Yang Yu · Zhi-Hua Zhou

论文摘要:多层表征方法被认为是深度神经网络的关键要素,尤其是类似于计算机视觉的感知任务。虽然,诸如梯度增强决策树 (GBDT) 之类的非可微模型是针对离散或列表数据进行建模时所采用的主要方法,但是它们很难与这种表示学习能力相结合。本文,我们提出了一种多层的增强决策树模型,该模型主要通过将多层回归的 GBDT 模型叠加一起作为其构建模块来研究学习层次表示的能力。在没有进行反向传播和可微分特性的情况下,该模型可以结合跨层目标传播的变体进行训练。实验结果表明我们所提出的模型在性能和表示学习能力方面具有高效的性能。

4、Adaptive Online Learning in Dynamic Environments

论文作者:Lijun Zhang · Shiyin Lu · Zhi-Hua Zhou

论文摘要:在本文中,我们研究了动态环境下的在线凸优化问题,旨在对任何比较器序列的 dynamic regret 进行界限。先前的工作表明,在线梯度下降算法具有的 dynamic regret 值为,其中 T 是迭代次数,P 代表的是比较器序列的路径长度。然而,这个结果并不让人满意,因为这与我们论文中建立的  dynamic regret 的下界值存在很大差距。为了解决这一缺陷,我们提出了一种名为动态环境自适应学习算法 (Ader), 旨在将下界与双对数因子相匹配,以实现 dynamic regret 值为。此外,我们还基于替代损失提出了一种改进的 Ader 算法,以这种方式,每轮训练的梯度评估量会从 O(logT) 减少到1。最后,我们将 Ader 算法进一步扩展到一系列可用于表征比较器设置的动态模型中。

5、ℓ1-regression with Heavy-tailed Distributions

论文作者:Lijun Zhang · Zhi-Hua Zhou

论文摘要:在本文中,我们探索了 heavy-tailed 分布下的线性回归问题。与先前使用平方损失来评估性能的研究不同,我们采用了绝对值损失来评估性能,这能够在预测误差较大时展现更强的鲁棒性。为了解决输入和输出都可能带来的 heavy-tailed 问题,我们将其转化为一个截断最小化问题,并证明它具有的超额风险,其中 d 代表维度,n 代表样本量。与传统的在 l1 回归上所做的工作相比,我们所提出的的方法能够在输入和输出之间没有指数矩的条件下,还能够实现高概率的风险约束。此外,当输入有界时,我们也能证明:我们的方法即使 heavy-tailed 输出的情况下,经验风险最小化也能匹敌 l2 回归。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1800

    文章

    48079

    浏览量

    242136
  • 机器学习
    +关注

    关注

    66

    文章

    8460

    浏览量

    133409

原文标题:NIPS论文排行榜出炉,南大周志华5篇论文入选

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    安全地毯不只是地毯,它是你的第二道保险

    保护装置
    jf_18500570
    发布于 :2025年02月15日 10:42:13

    LDR6500,不只是转换,是视觉盛宴的开启者!

    Type-C转DP:高清视界新选择 Type-C转DP技术凭借卓越兼容性、高清传输及多功能应用,成为连接新标准。该技术利用Type-C接口Alt Mode功能,实现Type-C到DisplayPort信号转换,支持高达8K@60Hz视频输出,兼容HDR技术。 适用设备: 笔记本电脑:轻松连接DP显示器。 智能手机:投屏至DP大屏,享受视觉盛宴。 平板电脑:提升视觉体验。 台式电脑:便捷连接DP显示设备。 投影仪:实现Type-C设备投影显示。 性能考量: DP版本:DP1.4支持8K分辨率。 分辨率与刷新率:取决于
    的头像 发表于 01-13 09:42 203次阅读
    LDR6500,<b class='flag-5'>不只是</b>转换,是视觉盛宴的开启者!

    OpenHarmony程序分析框架论文入选ICSE 2025

      近日,ICSE 2025软件工程实践Track放榜,面向OpenAtom OpenHarmony(以下简称“OpenHarmony”)的ArkTS程序分析基础框架--方舟程序分析器(论文题目为
    的头像 发表于 01-02 13:41 423次阅读
    OpenHarmony程序分析框架<b class='flag-5'>论文</b>入选ICSE 2025

    PON不只是破网那么简单

    大家有没有在网络卡顿的时候,心里默默吐槽“这破网”?今天要聊的PON(Passive Optical Network,无源光网络),可不是你心里那个“破”网,而是网络世界中的超级英雄家族——PON。   别急,我知道你在想什么,这听起来可能有点枯燥,但相信我,这绝对比你想象的要有趣得多! 1 PON,网络界的“超级英雄” PON,是指利用点对多点拓扑和分光器将数据从单个传输点传送到多个用户端点的光纤网络,由OLT(Optical Line Terminal,光线路终端),ONU(Optical Net
    的头像 发表于 12-04 09:08 371次阅读
    PON<b class='flag-5'>不只是</b>破网那么简单

    gawk程序基础教程

    gawk程序是Unix中原始awk程序的GNU版本。gawk程序让流编辑器迈上了一个新的台阶,它提供了一种编程语言而不只是编辑器命令。
    的头像 发表于 10-29 16:42 265次阅读

    Nullmax视觉感知能力再获国际顶级学术会议认可

    日前,欧洲计算机视觉国际会议 ECCV 2024公布论文录用结果,Nullmax感知团队的目标检测论文《SimPB: A Single Model for 2D and 3D Object Detection from Multiple Cameras》成功入选,卓越视觉
    的头像 发表于 09-02 14:07 528次阅读

    精密空调——结构和功能揭秘!精密空调不只是调节温度#精密空调

    精密空调
    北京汇智天源
    发布于 :2024年08月30日 19:15:07

    精密空调—不只是温度和湿度,精密空调的空气过滤也很硬核#精密空调

    精密空调
    北京汇智天源
    发布于 :2024年08月12日 19:35:31

    不只是前端,后端、产品和测试也需要了解的浏览器知识(二)

    继上篇《 不只是前端,后端、产品和测试也需要了解的浏览器知识(一)》介绍了浏览器的基本情况、发展历史以及市场占有率。 本篇文章将介绍浏览器基本原理。 在掌握基本原理后,通过技术深入,在研发
    的头像 发表于 08-12 14:32 462次阅读
    <b class='flag-5'>不只是</b>前端,后端、产品和测试也需要了解的浏览器知识(二)

    生成式AI在学术领域的应用亟需高度重视

    随着生成式人工智能(AI)工具的迅速普及,其在学术写作领域的应用正以前所未有的速度增长,为科研人员带来了诸多便利,如时间节省、语言障碍减少以及论文表达的清晰化。然而,这一趋势也引发了关于剽窃问题的新挑战,促使科研界深入探讨并制定更为明确的AI使用指南。
    的头像 发表于 08-09 15:43 768次阅读

    定档10月17日!本届学术年会还有重磅惊喜

    10月17日!第十一届中国功率变换器磁性元件联合学术年会已正式确定在杭州宝鼎开元名都大酒店召开。 亲爱的各位业界同仁: 由中国电源学会磁技术专委会、广东省磁性元器件行业协会联合主办,Big-Bit
    的头像 发表于 08-06 13:45 343次阅读

    如何解决射频功放阻抗不匹配问题

    提到射频功放,其实不只是EMC领域会用,无线通讯,半导体芯片,医疗,高能物理等领域都会用到,各有各的不同使用场景,不同的要求和用法。
    的头像 发表于 07-18 11:22 1452次阅读
    如何解决射频功放阻抗不匹配问题

    不只是前端,后端、产品和测试也需要了解的浏览器知识

    一、我们为什么要了解浏览器? 1. 对于前端开发者 1.浏览器是用户体验的第一线。我们需要了解浏览器的工作原理,才能有效地设计和实现用户界面,确保良好的用户体验。 2.好的产品需要考虑浏览器兼容性。我们需要了解这些差异,以确保网站或应用在不同的浏览器中都能正常工作,因为不同的浏览器对CSS、JavaScript等的支持程度和实现细节可能有所不同。 3.追求良好的性能需要我们了解浏览器的渲染机制、JavaScript引擎的工作原理,因为他们直接影响
    的头像 发表于 07-01 18:03 576次阅读
    <b class='flag-5'>不只是</b>前端,后端、产品和测试也需要了解的浏览器知识

    I2C主机产生不了起始位的原因?

    仍为高电平;紧接着执行while (NumOfBytes),程序会一直卡在这,同时AF位置1,START位仍为0。这其中的问题不只是为何???
    发表于 05-13 07:56

    Achronix新推出一款用于AI/ML计算或者大模型的B200芯片

    近日举办的GTC大会把人工智能/机器学习(AI/ML)领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代的来临
    的头像 发表于 03-28 15:48 968次阅读
    Achronix新推出一款用于AI/ML计算或者大模型的B200芯片