0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

“躲避”or“鸭子”:看深度学习如何解释多义词

NVIDIA英伟达 来源:未知 作者:工程师曾 2018-09-22 15:02 次阅读

脱离上下文时,每个英文单词都有多重含义。例如,“bank”可以指银行或河岸;“Fair”可以指展览会,也可以指对展览会的评价;“Duck”可以是躲避伤害的动作,也可以指鸭子。

对于人类来说搞清楚一个单词在某场景中适用的含义是非常简单的。但是,对于自然语言处理模型就是另一回事了。

近些年已经出现很多用于解析文本的AI工具,但是当涉及到多重含义的单词时,这些工具往往会陷入困境。来自艾伦人工智能研究所(Allen Institute for Artificial Intelligence)和华盛顿大学的研究人员正在努力解决这一难题,他们使用了可以根据上下文来确定英文单词含义的神经网络

向前和向后阅读

通常,NLP模型通过词向量(在每个单词中附加语言含义和单词语法的基础元素)中的结构化数据进行训练。此算法基于假设每个单词只有一种向量表示,但实际上英文单词并非如此。

研究人员利用名为“ELMo”的神经系统打破了这一假设,此神经系统可以为每个单词创造出无限数量的向量。

“‘ELMo’是‘Embeddings from Language Models’的缩写,而不是毛茸茸的红色芝麻街角色”,论文“Deep contextualized word representations”的第一作者Matthew Peters解释道。

ELMo喜欢阅读:这不是美国幼儿教育电视节目《芝麻街》中的Elmo,而是使用双向语言模型的神经系统ELMo。

常规语言模型尝试预测句子中即将出现的下一个单词。如果片段是“The people sat down on the …,”,那么算法将预测出“bench”或“grass”之类的单词。为了给单词附加所有潜在含义的词向量,这个团队使用了双向语言模型。

使用双向模型意味着,该模型可以通过一个二次的回顾性算法,获取句子的结尾并尝试预测出现在句子结尾前边的单词。当模型尝试分析的单词出现在句首,并且相关上下文随即出现时,这会非常有用。

“就像‘He lies to his teacher’与‘He lies on the sofa’这种情况”,Peters说道。

为测试ELMo的技能,该团队利用六种不同的NLP任务(包括情绪分析和问答等)对算法进行测试。与之前使用相同训练数据的方法相比,ELMo每次都会得到更新、更出色的结果,在某些情况下可以比之前的领先模型提升25%的速度。

“在NLP中,很重要的一点是,单一的方法能够提高多样化任务的性能”,Peters指出。

ELMo在半监督式学习领域大放异彩

在进行自然语言处理时,训练数据的类型非常关键。例如,问答系统使用的模型无法在任何旧文本上进行训练。通常,此类模型需要在由带标注的问题和答案对组成的大型数据库中训练,以学习如何做出正确的回答。

标注数据非常耗时并且成本高昂。因此,研究人员首先选择使用包含大约十亿个单词的大型无标记学术数据库来训练ELMo。然后,针对特定任务(例如问答)将此数据库调整为一个带标注的小型数据库。对于这种结合使用大量无标记数据和一小部分已标记数据的方法,统称为“半监督式学习”。

减少对已标记和带标注数据的依赖后,研究人员可以更轻松地在现实问题中应用其NLP模型应用。

“在我们的示例中,我们选择了一个未标记的学术数据库来训练语言模型”,Peters说道。但是研究人员能够调整算法,以便在任何其他未标记的数据库中运行该算法,也可以将其应用于生物医学论文、法律合同或其他语言等专业领域中。

与之前最先进(SOTA)的基准相比,ELMo在六个基准NLP任务中都增强了神经模型的性能。从左到右,这些任务依次是:语义推理、命名实体识别、问题回答、指代消解、语义角色标注和情感分类。

研究人员通过Amazon Web Service,使用NVIDIA Tesla V100和K80 GPU助力训练和推理。

在后续论文中,研究人员指出其仅使用了几百个已标记示例,便可应用ELMo模式回答几何问题。人工需要花费几个小时便能完成此标记工作,但却会显著提高NLP模型的性能。

ELMo已作为开源库提供。Peters表示其他的NLP研究人员已经将此模型应用到了他们自己的工作中,包括除英语外的其他语言。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30516

    浏览量

    268742
  • 模型
    +关注

    关注

    1

    文章

    3204

    浏览量

    48789
  • 深度学习
    +关注

    关注

    73

    文章

    5497

    浏览量

    121068

原文标题:“躲避”or“鸭子”:看深度学习如何解释多义词

文章出处:【微信号:NVIDIA_China,微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 433次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 357次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 524次阅读

    FPGA做深度学习能走多远?

    。FPGA的优势就是可编程可配置,逻辑资源多,功耗低,而且赛灵思等都在极力推广。不知道用FPGA做深度学习未来会怎样发展,能走多远,你怎么。 A:FPGA 在深度
    发表于 09-27 20:53

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随着深度
    的头像 发表于 07-09 15:54 830次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,深度学习模型
    的头像 发表于 07-09 10:50 623次阅读

    深度学习在视觉检测中的应用

    深度学习是机器学习领域中的一个重要分支,其核心在于通过构建具有多层次的神经网络模型,使计算机能够从大量数据中自动学习并提取特征,进而实现对复杂任务的处理和理解。这种
    的头像 发表于 07-08 10:27 666次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度
    的头像 发表于 07-05 09:47 865次阅读

    深度学习中的模型权重

    深度学习这一充满无限可能性的领域中,模型权重(Weights)作为其核心组成部分,扮演着至关重要的角色。它们不仅是模型学习的基石,更是模型智能的源泉。本文将从模型权重的定义、作用、优化、管理以及应用等多个方面,深入探讨
    的头像 发表于 07-04 11:49 1080次阅读

    深度学习常用的Python库

    深度学习作为人工智能的一个重要分支,通过模拟人类大脑中的神经网络来解决复杂问题。Python作为一种流行的编程语言,凭借其简洁的语法和丰富的库支持,成为了深度学习研究和应用的首选工具。
    的头像 发表于 07-03 16:04 612次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1271次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度学习技术,使得
    发表于 04-23 17:18 1275次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 607次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    【技术科普】主流的深度学习模型有哪些?AI开发工程师必备!

    接近于人工智能。它通过学习样本数据的内在规律和表示层次,对文字、图像和声音等数据进行解释深度学习的目标是让机器像人一样具有分析学习能力,能
    的头像 发表于 01-30 15:26 613次阅读
    【技术科普】主流的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型有哪些?AI开发工程师必备!

    什么是深度学习?机器学习深度学习的主要差异

    2016年AlphaGo 击败韩国围棋冠军李世石,在媒体报道中,曾多次提及“深度学习”这个概念。
    的头像 发表于 01-15 10:31 1052次阅读
    什么是<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的主要差异