0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于计算机的运动控制解决方案在伺服系统中的应用

电子设计 来源:郭婷 作者:电子设计 2019-10-10 08:05 次阅读

关于运动控制及系统

运动控制系统己经闻世多年了在各个领域得到应用。

而运动控制(包括轨迹控制、伺服控制)与顺序控制、过程控制,传动控制并列为典型的控制模式,是一直以来扮演重要支柱技术角色的自动控制系统,在许多高科技领域得到了非常广泛的应用,如激光加工,机器人数控机床。大规模集成电路制造设备、雷达和各种军用武器随动系统,以及柔性制造系统(FMS)等。而运动控制系统的组成主要由五部分构成:被移动的机械设备、带反馈和运动I/O的马达(伺服或步进)、马达驱动单元、运动控制模块、以及编程/操作接口软件(见图1)所示。其运动控制芯片或模块是作为伺服与步进控制用。

基于计算机的运动控制解决方案在伺服系统中的应用

图1 为运动控制系统组成示意框图

从图1可见传动装置将运动控制模块与特定应用马达、编码器、限制器、用户(运动)I/O连接在一起,用一根控制电缆连接运动控制模块与传动装置,为全部的命令集与反馈信号提供一个通道。当传动装置的性能不能满足应用需要时,用户还可选择通用运动接口(UMI)螺丝接线端子附件,与第三方马达和驱动器/放大器连接。

因为一般盛行的的解决方案均为封闭式结构系统, 所以基于计算机的运动解决方案所拥有的附加灵活性及低成本潜力使其受到普遍欢迎。

随着功率电子技术、微电子技术、计算机技术及控制原理的进步,以交流伺服电动机为执行电动机的交流伺服驱动具有了可与直流伺服驱动相比拟的特性,从而使得交流伺服电动机固有的优势得到了充分的发挥,交流伺服驱动已成为现代伺服驱动发展的方向。交流伺服技术现已广泛应用于数控机床,印刷包装机械、纺织机械,自动化生产线等自动化领域。为用户提高加工精度和工艺水平,取得良好的经济技术效益,提供了最佳的解决方案。

而当今的应用,最迫切需要可以在苛刻条件下,一天24小时连续工作的、可靠耐用的工业机器人和自动机械装置。这样的系统要求远比以前具有精确的电机和反馈控制,今天的大多数性能改进要归功于新技术和微电子技术的发展。这些创新消除了机器人和自动机械装置共用工作空间时产生的碰撞,改进了任务分配并且提高了伺服系统的精确性,从而使自动机械系统更加可靠地工作。由于运动控制芯片或模块是能为一般伺服与步进应用提供精确、高性能的运动功能,故可以简单易用的运动控制模块、软件、以及外设为运动和测量集成需求提供最佳集成解决方案。本文着重讨论运动控制模块在直流无刷电机伺服系统中的应用, 并对其主要运动控制模块的接收电路与正交编码器信号电缆技术作分析说明。

运动控制模块的应用-直流无刷电机伺服系统

运动控制模块要在直流无刷电机伺服系统中得到应用,它必须组成闭环系统的运动控制系统。

该直流无刷电机伺服系统由运动控制模块(卡)与伺服电机、驱动器和反馈元件(反馈用正交编码器)组合及编程/操作接口软件等组成。它能对于速度和位置提供精确与稳定的控制。图2所示为运动控制模块组成的直流无刷电机伺服系统方块图。

基于计算机的运动控制解决方案在伺服系统中的应用

图2 用运动控制模块与反馈速度和位置信号的正交编码器等组成的直流无刷伺服系统

从图2看出,该运动控制系统是含有一个直流无刷电机的伺服系统,而其运动控制模块正交编码器的接口电路,就是运动控制模块的编码输入电路,即接收器电路,它接收通过反馈编码器电缆传送来的正交编码器的输出信号。

对高性能、高速的应用系统而言,直流无刷电机是可用的,在此所述系统均是直流无刷电机伺服系统。这种电机的轴端装有测定轴速和换向点的正交编码器,用于控制电机的线圈切换顺序。而第二个正交编码器安装在机械装置的旋转轴上,它输出旋转轴的位置数据信号,使由于传动装置和导螺杆中的齿隙(两个或多于齿轮间的间隙)所导致的误差而引起旋转轴的位置和电机轴的位置不一致问题得到解决。

典型的运动控制模块包含一个微处理器和一个用于处理高速编码信号的DSP或定制ASIC。运动控制模块为驱动器或放大器提供一个控制转动速度和方向的信号,驱动器把它转换为适当的电压和电流去驱动电机运转。这样的运动控制模块在直流无刷电机伺服系统中的应用就能使糸统成为坚固的、具有容错能力的运动控制反馈系统。该系统应注意下列问题:

•运动控制模块与正交编码器输出之间的接口电路;

。接收器印刷电路板的设计;

。正交编码器信号电缆系统的应用。

运动控制模块的接收电路

运动控制模块的编码输入电路-接收器电路,实际上就是运动控制模块与正交编码器输出之间的接口电路。本糸统采用MAX3095接收器电路与正交编码器电缆-端子电阻匹配电路组合作为其接口电路。

正交编码器输出6路RS-422/RS—485信号(A、 、B、B、INDEX和 ),通过电缆传送至运动控制模块的接收电路MAX3095。接收电路把RS-422信号转换为逻辑电平信号,并把信号送至运动控制模块或DSP或ASIC进行处理。接收电路必须对来自伺服系统的各种故障包括开路、短路、噪声等做出反应,即对来正交编码器输出中的开路、短路、噪声编码信号做出反应。

基于计算机的运动控制解决方案在伺服系统中的应用

图3 运动控制模块与正交编码器输出之间的接口电路

图3是一个典型的运动控制模块的编码信号输入接收器电路(即运动控制模块与正交编码器输出之间的接口电路)。

从正交编码器发出的信号通过双绞线传送到接收电路,每对互补信号线A、 或B、 之间跨与接一个150Ω电阻提供适当的端接。当发生电缆断裂或脱离等开路故障时,要使运动控制模块采取适当的动作,首先必须检测到这些故障。作为一种失效保护措施,当输入信号线开路时,MAX3095接收器会输出逻辑高。1kΩ偏置电阻使输入端“A”的电压至少比输入端“B”高200mV。当有输入端接电阻时,它们仍需保持失效保护输出。这个电路具有ESD防护、开路检测和输出短路保护,但不能检测输人短路。

另一种改进的电路(图4)包含了2片MAX3098,每片都包含三路RS—422/RS-485接收器。

基于计算机的运动控制解决方案在伺服系统中的应用

图4 图3的改造电路

各接收器均具有内置的故障检测、±15kV ESD(静电释放)保护和32Mbps的数据速率。而MAX3098E能检测接收器输入开路和短路故障,也能检测低电压差分信号和共模范围超限等其它故障。它的逻辑电平输出能够指示哪一路接收器输入发生了故障。这种直接的故障报告降低了软件开销,并将外部逻辑元件减到最少。

任何一路正交编码器输出即控制模块的编码输入发生故障都会立即在相应输出发出逻辑高信号:ALARM A、ALARM B和ALARM Z。伺服系统移动缓慢时,会在正交编码器信号的过零区域产生瞬时故障,触发“假故障”。通过选择电容C-延迟的值,可将ALARM D输出(ALARM A、ALARM B和ALARM Z的逻辑或)延迟适当的时间。120Ω电阻为RS422电缆提供适当的端接。

关于反馈编码器

由于为实现精确定位,伺服系统必须有一个反馈信号使反馈形成闭环。而能提供这种反馈信号的装置包括光电编码器、旋转变压器和正交磁致伸缩线性位移传感器

光电编码器输出一个数字方波信号,包括正交(增量)型、绝对值型和伪随机型。一个典型的光电编码器包括光发射器、光接收器、输出原始模拟信号的编码轮。模拟信号被送至编码器的处理电路,转换为数字信号输出。信号输出方式有集电极开路输出和单端输出,逻辑电平为5V至24V。为了降低噪声干扰,最可靠的输出是互补、差分的RS-422。正交光电编码器输出的反馈信号有A、B、Z三种形式的脉冲。信号A和B来自编码器码轮并具有90º的相差。当A超前于B时,表明编码器是顺时针旋转的,反之,编码器为逆时针旋转。因而由这两个信号就可得到位置、方向和速度数据。信号Z表示电机转子的位置和编码器的轴是否转过360º。它还能校验信号A和B的误算。采用 RS-422接口时, 编码器提供互补的A、B和Z输出。

绝对光电编码器采用的信号处理部件与正交光电编码器相似,只是它在每旋转一周时输出一个并行二进制字。一般是十二至十三位的BCD、格雷或自然二进制码,13位输出只用于低频响应(1200转/分输出12位;600转/分输出13位),但每转360º具有更精细的分辨率。这种类型的编码器很适于监测上电和掉电期间的轴的位置,因为和正交编码器不同的是,在编码器没有移动时,轴的位置也可通过编码输出读得。

新型的伪随机光电编码器输出3个信号:A和B给出了方向和空间同步信号,另一个信号给出位置数据这种编码器需要有1º到2º旋转才能确定位置。

旋转变压器是具有正弦和余弦信号输出的反馈编码器,通过伺服系统控制器的处理,可以从中获得速度和位置数据。当轴旋转时,旋转变压器的反馈信号能够提供绝对位置信息,但其低速性能较差。这种编码器的主要缺点是将信号转换为数字信号时,要对信号进行必要的处理,造价相对较高。

正交型磁致伸缩线性位移传感器(LDT)是用来测量直线移动的反馈编码器/传感器,不适用于转动位置测量。它的工作原理是:LDT的线性位移杆带动磁铁的移动,磁铁作用于磁致伸缩导线,产生一个电流脉冲信号,再由一个拾取传感据检测这个脉冲信号-模拟位置信号。最后由LDT对它进行处理,转换为和正交编码器相似的数字输出信号A,B、和Z.

结语

直流无刷电机伺服系统是一个坚固的具有容错能力的运动反馈控制系统。该系统的接收电路必须对产生的各种故障做出预知的反应,为了预防编码器数据的噪声问题,还要合理地设计接收器电路的印刷电路板。应用时也要考虑正交编码器的信号电缆系统,包括接收器电路的端接。有了这些预防措施,就可以用设计出性能稳定、故障期间具有预知状态的运动控制反馈系统。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 编码器
    +关注

    关注

    45

    文章

    3592

    浏览量

    134142
  • 计算机
    +关注

    关注

    19

    文章

    7418

    浏览量

    87711
  • 雷达
    +关注

    关注

    50

    文章

    2897

    浏览量

    117299
收藏 人收藏

    评论

    相关推荐

    探索计算机建模与仿真液压伺服控制系统的应用

    液压伺服控制系统其指令单元可以是信号发生器、电位器、计算机或其他电子器件,根据系统动作的要求发出相应的电压信号。
    发表于 01-26 11:40 1085次阅读
    探索<b class='flag-5'>计算机</b>建模与仿真<b class='flag-5'>在</b>液压<b class='flag-5'>伺服</b><b class='flag-5'>控制系统</b><b class='flag-5'>中</b>的应用

    AMEYA360设计方案丨交流伺服系统解决方案

    是通过发脉冲来控制的。2、方案概述Ameya360 交流伺服系统解决方案具有控制简单、低速运行性能好,运行 效率高,转动惯量小,转矩脉动小,
    发表于 05-23 17:10

    机器人热潮伺服系统

    实现其最优化。  网络化:伺服系统网络化是综合自动化技术发展的必然趋势,是控制技术、计算机技术和通信技术相结合的产物。  简易化:这里所说的“简”不是简单而是精简,是根据用户情况,将用户使用的
    发表于 10-12 11:01

    伺服控制解决方案,满足你的电机控制方案需求

    基于Σ-Δ调制器的业界最佳性能解决方案。位置检测性能是伺服控制的关键,常常使用光学编码器和旋转变压器作为位置传感器。伺服控制技术从模拟向数字
    发表于 10-25 10:19

    计算机解决方案的逻辑分析基础

    计算机解决方案的逻辑分析基础
    发表于 07-29 13:37

    电液伺服系统控制器的设计有什么方法?

    仿真研究。文献[ 2 ] 研究了基于RBFNN 的PID控制在电液位置伺服系统的应用。文献[ 3 ]对电液位置伺服系统采用滑模变结构控制,
    发表于 08-21 06:13

    求大神分享两辊式轧机的计算机控制系统设计

    本文介绍两辊式轧机的计算机控制系统设计。该轧机由液压伺服系统驱动,采用IBM-PC工业控制计算机及可编程控制
    发表于 05-14 06:41

    计算机伺服控制系统设计

    综合习题-2 计算机伺服控制系统设计13031205 张先炳1.已知:被控对象为一个带有均质圆盘负载的直流力矩电机,其伺服系统方框图如下:其中,电机传递函数为角速率wω/Δu 和转角q
    发表于 09-15 08:41

    计算机伺服控制系统

    计算机伺服控制系统综合练习2设计张贤兵1.已知:被控对象是一台具有均匀磁盘负载的DC力矩电机及其伺服系统框图如下:其中,电机传递函数为角速度w/u和角度q/u;模拟
    发表于 09-15 09:20

    计算机伺服控制系统框架

    北航计算机控制系统大作业2综合习题-2 计算机伺服控制系统设张先炳1.已知:被控对象为一个带有均质圆盘负载的直流力矩电机,其伺服系统方框图如
    发表于 09-15 07:27

    基于CAN总线的分布式位置伺服系统设计

    随着计算机技术和现场总线技术的发展和成熟,也促使伺服系统的实现方式和体系结构不断地发展,将现场总线应用于运动控制,构成分布式
    发表于 01-19 10:19 1707次阅读
    基于CAN总线的分布式位置<b class='flag-5'>伺服系统</b>设计

    计算机控制直流伺服系统设计与仿真

    研究了对伺服系统数学模型的建立和电流环、转速环、位置环三环调节器的设计、调节器的离散化以及性能仿真。
    发表于 08-15 16:24 41次下载
    <b class='flag-5'>计算机控制</b>直流<b class='flag-5'>伺服系统</b>设计与仿真

    伺服系统设计验证流程解决方案

    验证四个阶段组成,各个阶段相对独立,可能会在早期会引入较多的设计缺陷,需进行迭代设计,必然会提升伺服系统开发周期及成本。采用基于模型设计(Model Based Design,MBD)的伺服系统设计验证流程解决方案,能够大大提高
    发表于 04-05 11:44 1127次阅读

    机电伺服系统有哪些_机电伺服系统工作原理

    机电伺服系统广泛应用于各种机械设备,其种类和形式多种多样。以下列举一些常见的机电伺服系统:   伺服电机系统
    发表于 03-07 14:31 2017次阅读

    伺服系统原理及分类

    伺服系统主要由伺服控制器、驱动电路、伺服电动机及相应反馈检测器件组成。1.伺服系统原理当人为的给定控制
    的头像 发表于 08-27 08:08 3000次阅读
    <b class='flag-5'>伺服系统</b>原理及分类