0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

DC-DC技术组合提升效率和功率转换密度的解决方案

电子设计 来源:郭婷 作者:电子设计 2019-08-14 08:07 次阅读

电力系统设计师正面临来自市场的持续压力,努力寻找充分利用可用功率的方法。

在便携式设备中,更高的效率将延长电池的使用寿命,使更多的功能可以被打包成更小的数据包。在服务器和基站中,更高的效率将节省基础设施(冷却系统)及运营的成本(电力账单)。

为此,系统设计者正在改进几个领域的能量转换过程,包括更高效的开关模式拓扑、打包创新、以及基于碳化硅(SiC)和氮化镓(GaN)的新半导体设备。

开关变换器拓扑改进

为充分利用可用功率,人们越来越多地采用基于交换而不是线性技术的设计。开关电源(SMPS)的有效功率高达90%以上。这延长了便携式系统的电池寿命,降低了大型装置的电力成本,并释放了原先用于散热部件的空间。

转至切换拓扑有一定的缺陷,其更复杂的设计形式要求具有多元化的技能。设计工程师必须熟悉模拟和数字技术、电磁学及闭环控制。印刷电路板(PCB)的设计者必须更加注意电磁干扰(EMI),因为高频开关波形会使敏感的模拟电路和射频电路产生问题。

开关电源转换的基本概念比晶体管的发明更早:例如,1910年发明的凯特式感应放电系统,其使用了机械振动器来执行汽车点火系统的回返推进转换器

许多标准的拓扑已经存在了几十年,但这并不意味着工程师不会调整标准设计来适应新的应用程序,特别是控制循环。标准架构使用固定频率,在不同的负载条件下,通过反馈输出电压的一部分(电压模式控制)或控制感应电流(电流模式控制),保持恒定的输出电压。设计师们已经不断改进,以克服基本设计的缺陷。

DC-DC技术组合提升效率和功率转换密度的解决方案

图1:电压模式的降压转换器拓扑(来自:德州仪器)

图1是基本的闭环电压模式控制(VMC)系统的框图。功率级由电源开关和输出滤波器组成。补偿块包括输出电压分压器、误差放大器、电压参考和回路补偿元件。脉冲宽度调制器(PWM)使用比较器将错误信号与固定的斜面进行比较,产生与误差信号成比例的输出脉冲序列。

虽然VMC系统中,不同的负载皆有严格的输出规则,且易于同步到外部时钟,但标准架构有一些缺陷。循环补偿降低了控制回路的带宽,降低了瞬态响应的速度;错误放大器则增加了操作电流,降低了效率。

在不需要循环补偿的情况下,恒定导通时间(COT)控制方案提供了良好的瞬态性能。COT控制使用比较器,比较具有参考电压的缩放输出电压:当输出小于参考时,就会生成一个固定的定时脉冲。在低负载比条件下,这可能导致开关频率非常高,因此自适应COT控制器便会产生一个随输入和输出电压变化而变化的时间,而这在稳定状态下可以保持频率几乎不变。

德州仪器的 D-CAP 拓扑是对自适应COT方法的改进:D-CAP控制器在反馈比较器的输入中增加了一个斜坡电压。通过减少应用程序中的噪声频带,斜面改善了抖动性能。图2是COT和D-CAP系统的比较。

DC-DC技术组合提升效率和功率转换密度的解决方案

图2:标准COT拓扑(a)和D-CAP拓扑(b)的比较(来源:德州仪器)

针对不同的需求,D-CAP拓扑有几种不同的变体。例如,TPS53632半桥PWM控制器使用D-CAP+架构,其设计主要针对高电流的应用程序,可以在48V到1V的POL变换器中驱动高达1MHz的功率级,效率高达92%。

与D-CAP相反,D-CAP+反馈环增加了一个与感应电流成比例的部件,用于精确的下垂控制。在不同的线路和负载条件下,添加的错误放大器将提升DC负载的准确性。

控制器的输出电压由内部DAC设置。当电流反馈达到误差电压水平时,这个周期就会开始,与DAC设置点电压和反馈输出电压的放大差相对应。

在轻载荷条件下改善操作

对于移动和可穿戴设备,需要改善轻负荷条件下的性能,以延长电池运行时间。许多便携式和可穿戴应用程序将大部分时间用于低功率的备用“暂时休眠”或“睡眠”模式,只在响应用户输入或进行定期测量时才会激活,因此在待机模式中,尽量减少功率消耗是最优先考虑的事情。

DCS-控制™(无缝过渡直接控制到省电模式)拓扑结构综合了三种不同控制方案的优点,即迟滞模式、电压模式和电流模式,以在轻载条件下改善性能,特别是过渡至轻载状态或偏离轻载状态时。该拓扑支持中型和重型负载的PWM模式,以及用于轻负载的电源保存模式(PSM)。

在PWM操作过程中,系统根据输入电压,以其额定开关频率运行,并控制频率变化。如果负载电流降低,转换器就会切换到PSM,以保持高效率,直到降至较轻的负载。在PSM中,开关频率随负载电流线性降低。这两种模式都是单个控制块的功能,因此从PWM到PSM的转换是无缝的,不会影响输出电压。

图3是DCS-控制™块框图。控制回路获取关于输出电压变化的信息,并将其直接反馈给快速比较器。比较器设置了开关频率,它是稳态运行条件的常数,并对动态负载变化提供即时响应。电压反馈回路可以精确地调节DC负载。内部补偿调节网络以小外部组件和低ESR电容器便可以实现快速稳定的操作。

DC-DC技术组合提升效率和功率转换密度的解决方案

图3:DCS-控制™拓扑在TPS62130降压转换器中应用(来源:德州仪器)

TPS6213xA-Q1同步开关电源转换器基于DCS-控制™拓扑,对高功率密度的POL应用程序进行了优化。典型的2.5MHz开关频率允许使用小型电感器,并能提供快速瞬态响应和高输出电压精度。TPS6213可以在3V到17V的输入电压范围内操作,并且可以在0.9V和6V之间输出高达3A的连续输出电流。

新的封装技术可以帮助设计师提高功率密度

另一种增加功率密度的方式是减小所需的PCB面积。其中一种方法便是将组件与DC / DC模块结合起来。来自德州仪器的MicroSiP和 MicroSiL电源模块,在电源转换器中集成了被动元件和集成电路(IC),其将IC嵌入到FR4薄片基板上,并在基材上安装电感器,以此集成为单个设备。

完全集成的MicroSiP 电源模块将IC和被动组件集成到一个最高集成级别的设备中。最小的模块使用BGA的格式,其占用面积不足7mm²。

DC-DC技术组合提升效率和功率转换密度的解决方案

图4: MicroSiP封装将集成电路嵌入到基片中,并将被动组件堆在顶部,以形成微型DC-DC转换器 (来源:德州仪器)

MicroSiL设备集成了电源电感器和调节器IC,并使用了外部电容。该模块的引脚分配和轮廓类似于方形扁平无引脚封装(QFN)。例如,TPS82085功率模块是同步降压转换器,可以在3mm × 2.8mm 8针脚封装上传输3A的电流。

集成可以极大地减少内存占用,但是还需要权衡考量。例如,MicroSiP封装在控制器的顶部堆了电感器,并在PCB上安装组件。与离散设计相比,这些特性都提升了MicroSiP模块的高度。

设计最小占用面积还需要减小电感器的尺寸。线圈电感与其面积和转动次数成正比,所以在不改变电感的情况下,减少面积,就需增加使用的导线。更多的导线可以增加线圈的DC电阻

超越硅的设计:碳化硅(SiC)和氮化镓(GaN)设备

更高的性能追求使得设计师们开始不断探索能超越硅的材料。以SiC和GaN制造的电力设备开始在一些电力应用中取代硅设备。这二者都是宽带宽(WBG)半导体的使用案例。

想必距您上一节固态物理课已有一段时间,我们先来了解一下固体。固体的能带隙用于衡量价带顶部和传到带底部之间的能量差(eV),是确定材料导电性的主要因素。

硅的能带隙为1.1eV,相比之下,WBG半导体的能带隙分别为3.3V (SiC) 和3.4V (GaN),因此,需要更多的能量将电子从价带传输到传导带。这对于电能半导体而言具有优势:与硅相比,WBG设备具有更低的电阻、更高的击穿电压、高级的反向恢复特性,并且可以在更高的开关频率上进行操作。

更高的开关频率允许使用更小的电容、电感器和变压器,其尺寸、重量和成本都大为节省。同时,DC-DC转换效率可以提升10%。

德州仪器公司最近发布了一款LMG5200,将WBG半导体与高级封装结合起来。LMG5200是半桥功率级,在一个QFN封装中集成了两个80V的GaN功率场效应管和一个高频GaN驱动程序。LMG5200将与现有产品(如TPS53632)进行配对,以服务各种应用程序,包括用于计算、工业和电信应用程序的同步降压转换器和48V POL转换器。

总结

提升效率和功率转换密度的解决方案需要一个多学科的方法,借鉴控制器设计、封装和半导体研究方面的专业知识。只有集各领域之所长,设计师才能满足许多应用领域的需求,这些领域从低功耗电池驱动的可穿戴设备和便携式设备,到高功率的电信交换机和数据中心等,范围十分广泛。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    185

    文章

    17910

    浏览量

    252474
  • 半导体
    +关注

    关注

    335

    文章

    27908

    浏览量

    224593
  • 晶体管
    +关注

    关注

    77

    文章

    9820

    浏览量

    139236
收藏 人收藏

    评论

    相关推荐

    高度集成的非隔离双路输出DC-DC转换解决方案

    近年来,随着大数据、云计算的快速发展,通信基站及数据中心的需求呈几何式增长。为适配通信设备和数据中心的快速发展,DC-DC电源管理芯片在提供稳定电源输出的同时,更需具备高功率密度、高转换效率
    发表于 09-26 12:23 2191次阅读
    高度集成的非隔离双路输出<b class='flag-5'>DC-DC</b><b class='flag-5'>转换</b>器<b class='flag-5'>解决方案</b>

    DC-DC电源解决方案(原文资料)

    DC-DC电源解决方案
    发表于 08-01 20:50

     DC-DC电源模块变换器主要开展趋势

    ,减小开关损耗以及开关应力,以完成高效率的高频化。如美国VICOR公司开发的DC-DC高频软开关变换器,48/600W输出,效率为90%,功率密度120W/in3,日本LAMBDA公司
    发表于 05-01 15:48

    开关电源技术专题-DC/DC 开关电源技术应用方案集锦

    开关电源的设计开关DC-DC转换器的EMI方案高性能混合集成DC/DC变换器 - 全文高效率超宽
    发表于 12-12 17:48

    DC-DC转换电路的测试问题

    自己做了一个DC-DC转换器,用的是LM2596,输入是12V,输出是5V。这个模块要为后端电路供电,后端电路所需功率是7.5W,为了使效率更高,我就想使
    发表于 05-18 12:28

    [一周推荐] 峰值效率接近93% 隔离稳压DC-DC转换

    Vicor DCM3623是一种隔离稳压DC-DC转换器,可从宽泛的未稳压输入生成隔离式稳压输出。凭借其高频零电压开关 (ZVS) 拓扑结构,DCM3623转换器可在整个输入电压范围内始终提供高
    发表于 08-06 10:33

    采用DC-DC模块的无人机电源解决方案

    DCM DC-DC转换器通过突破性封装技术——转换器级封装(ChiP)技术进行封装。 为了实现更高的
    发表于 10-09 14:25

    Ameya360新能源汽车电池DC-DC转换器模块解决方案

    。目前 DC/DC 变换器的效率可以很高,达到 90% 以上。2、 方案概述Ameya360 新能源汽车电池 DC-DC
    发表于 11-29 13:38

    功率MOSFET技术提升系统效率功率密度

    通过对同步交流对交流(DC-DC)转换器的功耗机制进行详细分析,可以界定必须要改进的关键金属氧化物半导体场效晶体管(MOSFET)参数,进而确保持续提升系统效率
    发表于 07-04 06:22

    电源内阻对DC-DC转换效率的影响

     DC-DC转换器常用于采用电池供电的便携式及其它高效系统,在对电源电压进行升压、降压或反相时,其效率高于95%。电源内阻是限制效率的一个重要因素。  立深鑫电子为大家描述了电源内阻的
    发表于 11-16 08:52

    什么是DC-DC

    一、什么是DC-DC通常来讲DC-DC转换器包括升压、降压、升/降压和反相等电路。其优点是效率高、可以输出大电流、静态电流小。随着集成度的提高,许多新型
    发表于 11-17 06:42

    负载点DC-DC转换器解决电压精度、效率和延迟问题

    为什么使用DC-DC转换器应尽可能靠近负载的负载点(POL)电源?答案:效率和精度是两大优势,但实现POL转换需要特别注意稳压器设计。接近电源。这是提高电源轨的电压精度、
    发表于 12-07 08:00

    负载点DC-DC转换器解决电压精度、效率和延迟问题

    为什么使用DC-DC转换器应尽可能靠近负载的负载点(POL)电源?效率和精度是两大优势,但实现POL转换需要特别注意稳压器设计。接近电源。这是提高电源轨的电压精度、
    发表于 12-14 07:00

    如何使用SiC功率模块改进DC/DC转换器设计?

      功率电子转换器开发人员不断努力以最高效率实现更高的转换功率密度。考虑到减少二氧化碳排放和负责任地使用电能和材料的共同目标,这一点变得更
    发表于 02-20 15:32

    DC-DC转换器的电源转换效率功率电感性能的解决方案

    DC-DC转换器的电源转换效率功率电感性能的解决方案 随着高新
    发表于 03-26 11:32 8367次阅读
    <b class='flag-5'>DC-DC</b><b class='flag-5'>转换</b>器的电源<b class='flag-5'>转换</b><b class='flag-5'>效率</b>和<b class='flag-5'>功率</b>电感性能的<b class='flag-5'>解决方案</b>