0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

产生ESD静电的原因及该如何解决此问题

电子设计 作者:电子设计 2018-09-27 08:48 次阅读

静电是人们非常熟悉的一种自然现象。静电的许多功能已经应用到军工或民用产品中,如静电除尘、静电喷涂、静电分离、静电复印等。然而,静电放电ESD(Electro-Static Discharge)却又成为电子产品和设备的一种危害,造成电子产品和设备的功能紊乱甚至部件损坏。

下面谈一谈静电相关问题,在Part1文末部分介绍了一种终极大招,来解决数码产品ESD静电问题,在Part2部分,例举了PCB设计过程中抗ESD问题,作了详细剖析。

Part 1 ESD静电基本问题

现代半导体器件的规模越来越大,工作电压越来越低,导致了半导体器件对外界电磁骚扰敏感程度也大大提高。ESD对于电路引起的干扰、对元器件、CMOS电路及接口电路造成的破坏等问题越来越引起人们的重视。电子设备的ESD也开始作为电磁兼容性测试的一项重要内容写入国家标准和国际标准。

1.静电成因及其危害

静电是两种介电系数不同的物质磨擦时,正负极性的电荷分别积累在两个特体上而形成。当两个物体接触时,其中一个趋从于另一个吸引电子,因而二者会形成不同的充电电位。就人体而言,衣服与皮肤之间的磨擦发生的静电是人体带电的主要因之一。

电源与其它物体接触时,依据电荷中和的机理存在着电荷流动,传送足够的电量以抵消电压。在高速电量的传送过程中,将产生潜在的破坏电压、电流以及电磁场,严重时将其中物体击毁,这就是静电放电。

A.接触分离起电

任何两个不同物材质地物体接触后再分离即可产生静电,当两个不同物体相互接触时就会产使得一个物体失去一些电荷如电子转移到另一个物体使其带正电.而另一个物体得到一些剩余电子的物体而带负电.若在分离的过程中电荷难以中和,电荷就会积累使物体带上静电,所以物体与其它物体接触后分离就会带上静电.

B.摩擦起电

实质上摩擦起电是一种接触又分离的造成正负电荷不平衡的过程.摩擦是一个不断接触与分离的过程.因此摩擦起电实质上是接触分离起电,而产生静电的最普通方法,就是摩擦生电.材料的绝缘性越好,越容易是使用摩擦起电.

摩擦起电是一个机械过程,依靠相对表面移动传送电量.传送的电量取决于接触的次数.表面粗糙度湿度,接触压力,摩擦特性以及相对运动速度.一个人或一辆车所能带来的电量的电压值大程度上由它们的电容决定.

C.感应起电

针对导体材料而言,因电子能在它的表面自由流动,如将其置于一电场中,由于同性相斥,异性相吸,正负离子就会转移.

D.传导起电

针对导电材料而言,因电子能在它的表面移动,如带电物体接触,将会发生电荷转移.

国家标准中定义:静电放电是具有不同静电电位的特体互相靠近或直接接触引起的电荷转移,一般用ESD表示。ESD会导致电子设备严重损坏或操作失常。

静电对器件造成的损坏有显性和隐性两种。隐性损坏在当时看不出来,但器件变得更脆弱,在过压、高温等条件下极易损坏。

ESD两种主要的破坏机制是:由ESD电流产生热量导致设备的热失效;由ESD感应出过高电压导致绝缘击穿。两种破坏可能在一个设备中同时发生,例如,绝缘击穿可能激发大的电流,这又进一步导致热失效。 除容易造成电路损害外,静电放电也极易对电子电路造成干扰。静电放电对电子电路的干扰有二种方式。一种是传导干扰,另一种是辐射干扰。

2.数码产品的构造及其ESD问题

现在各类数码产品的功能越来越强大,而电路板却越来越小,集成度越来越高。并都或多或少的装有部分接口用于人机交互,这样就存在着人体静电放电的ESD问题。一般数码产品中需要进行ESD防护的部位有:USB接口、HDMI接口、IEEE1394接口、天线接口、VGA接口、DVI接口、按键电路、SIM卡、耳机及其他各类数据传输接口.

ESD可能会造成产品工作异常、死机,甚至损坏并引发其他的安全问题。所以在产品上市之前,国内或国外检测部门都要求进行ESD和其它浪涌冲击的测试。其中接触放电需要达到±8kV,空气放电需要达到±15kV,这就对ESD的设计提出了较高的要求。

3.数码产品中ESD问题解决与防护

3.1 产品的结构设计

如果将释放的静电看成是洪水的话,那么主要的解决方法与治水类似,就是“堵”和“疏”。如果我们设计的产品有一个理想的壳体是密不透风的,静电也就无从而入,当然不会有静电问题了。但实际的壳体在合盖处常有缝隙,而且许多还有金属的装饰片,所以一定要加以注意。

其一,用“堵”的方法。尽量增加壳体的厚离,即增加外壳到电路板之间的距离,或者通过一些等效方法增加壳体气隙的距离,这样可以避免或者大大减少ESD的能量强度。

通过结构的改进,可以增大外壳到内部电路之间气隙的距离从而使ESD的能量大大减弱。根据经验,8kV的ESD在经过4mm的距离后能量一般衰减为零。

其二,用“疏”的方法,可以用EMI油漆喷涂在壳体的内侧。EMI油漆是导电的,可以看成是一个金属的屏蔽层,这样可以将静电导在壳体上;再将壳体与PCB(Printed Circuit Board)的地连接,将静电从地导走。这样处理的方法除了可以防止静电,还能有效抑制EMI的干扰。如果有足够的空间,还可以用一个金属屏蔽罩将其中的电路保护起来,金属屏蔽罩再连接PCB的GND。

总之,ESD设计壳体上需要注意很多地方,首先是尽量不让ESD进入壳体内部,最大限度地减弱其进入壳体的能量。对于进入壳体内部的ESD尽量将其从GND导走,不要让其危害电路的其它部分。壳体上的金属装饰物使用时一定要小心,因为很可能带来意想不到的结果,需要特别注意。

3.2 产品的PCB设计

现在产品的PCB(Printed Circuit Board)都是高密度板,通常为4层板。随着密度的增加,趋势是使用6层板,其设计一直都需要考虑性能与面积的平衡。一方面,越大的空间可以有更多的空间摆放元器件,同时,走线的线宽和线距越宽,对于EMI、音频、ESD等各方面性能都有好处。另一方面,数码产品设计的小巧又是趋势与需要。所以,设计时需要找到平衡点。就ESD问题而言,设计上需要注意的地方很多,尤其是关于GND布线的设计以及线距,很有讲究。有些产品中ESD存在很大的问题,一直找不到原因,通过反复研究与实验,发现是PCB设计中的出现的问题。为此,这里总结了PCB设计中应该注意的要点:

(1)PCB板边(包括通孔Via边界)与其它布线之间的距离应大于0.3mm;

(2)PCB的板边最好全部用GND走线包围;

(3)GND与其它布线之间的距离保持在0.2mm~0.3mm;

(4)Vbat与其它布线之间的距离保持在0.2mm~0.3mm;

(5)重要的线如Reset、Clock等与其它布线之间的距离应大于0.3mm;

(6)大功率的线与其它布线之间的距离保持在0.2mm~0.3mm;

(7)不同层的GND之间应有尽可能多的通孔(VIa)相连;

(8)在最后的铺地时应尽量避免尖角,有尖角应尽量使其平滑。

3.3 产品的电路设计

在壳体和PCB的设计中,对ESD问题加以注意之后,ESD还会不可避免地进入到产品的内部电路中,尤其是以下一些端口:USB接口、HDMI接口、IEEE1394接口、天线接口、VGA接口、DVI接口、按键电路、SIM卡、耳机及其他各类数据传输接口,这些端口很可能将人体的静电引入内部电路中。所以,需要在这些端口中使用ESD防护器件。

以往主要使用的静电防护器件是压敏电阻TVS器件,但这些器件普遍的缺点是响应速度太慢,放电电压不够精确,极间电容大,寿命短,电性能会因多次使用而变差。所以目前行业中普遍使用专业的“静电抑制器”来取代以往的静电防护器件 。“静电抑制器”是专业解决静电问题的产品,其内部构造和工作原理比其他产品更具科学性和专业性。它由Polymer高分子材料制成,内部菱形分子以规则离散状排列,当静电电压超过该器件的触发电压时,内部分子迅速产生尖端对尖端的放电,将静电在瞬间泄放到地。它最大特点是反应速度快(0.5ns~1ns)、非常低的极间电容(0.05pf~3pf),很小的漏电流(1μA),非常适合各种接口的防护。

因为静电抑制器具有体积小、无极性、反应速度快等诸多优点,现在的设计中使用静电抑制器作为防护器件的比例越来越多,在使用时应注意以下几点:

1、将该器件尽量放置在需要保护的端口附近;

2、到GND的连线尽可能短;

3、所接GND的面积尽可能大。

ESD 的问题是众多重要问题之一。在不同的电子设备中有不同的方式来避免对电路的危害。由于现在的数码产品体积小、密度大,在 ESD 的防护上有独到的特点。通过大量的静电测试实验证明,采用本文的设计方法处理,将一个原本± 2kV 放电就会死机的产品加以保护和改进,在± 8kV 的静电放电情况下依然可以稳定工作,起到了很好的静电防护效果。随着电子设备使用的日益广泛, ESD 设计是每一个结构设计工程师和电子设计工程师需要重点关心的问题,通过不断总结与学习, ESD 问题将不再是一个难题!

Part 2 浅谈设计PCB时抗ESD的方法

在PCB板的设计当中,可以通过分层、恰当的布局布线和安装实现PCB的抗ESD设计。在设计过程中,通过预测可以将绝大多数设计修改仅限于增减元器件。通过调整PCB布局布线,能够很好地防范ESD。以下是一些常见的防范措施。

尽可能使用多层PCB,相对于双面PCB而言,地平面和电源平面,以及排列紧密的信号线-地线间距能够减小共模阻抗和感性耦合,使之达到双面PCB的 1/10到1/100。尽量地将每一个信号层都紧靠一个电源层或地线层。对于顶层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可以考虑使用内层线。

对于双面PCB来说,要采用紧密交织的电源和地栅格。电源线紧靠地线,在垂直和水平线或填充区之间,要尽可能多地连接。一面的栅格尺寸小于等于60mm,如果可能,栅格尺寸应小于13mm。

确保每一个电路尽可能紧凑。

尽可能将所有连接器都放在一边。

如果可能,将电源线从卡的中央引入,并远离容易直接遭受ESD影响的区域。

在引向机箱外的连接器(容易直接被ESD击中)下方的所有PCB层上,要放置宽的机箱地或者多边形填充地,并每隔大约13mm的距离用过孔将它们连接在一起。

在卡的边缘上放置安装孔,安装孔周围用无阻焊剂的顶层和底层焊盘连接到机箱地上。

PCB装配时,不要在顶层或者底层的焊盘上涂覆任何焊料。使用具有内嵌垫圈的螺钉来实现PCB与金属机箱/屏蔽层或接地面上支架的紧密接触。

在每一层的机箱地和电路地之间,要设置相同的“隔离区”;如果可能,保持间隔距离为0.64mm。

在卡的顶层和底层靠近安装孔的位置,每隔100mm沿机箱地线将机箱地和电路地用1.27mm宽的线连接在一起。与这些连接点的相邻处,在机箱地和电路地之间放置用于安装的焊盘或安装孔。这些地线连接可以用刀片划开,以保持开路,或用磁珠/高频电容的跳接。

如果电路板不会放入金属机箱或者屏蔽装置中,在电路板的顶层和底层机箱地线上不能涂阻焊剂,这样它们可以作为ESD电弧的放电极。

要以下列方式在电路周围设置一个环形地:

(1)除边缘连接器以及机箱地以外,在整个外围四周放上环形地通路。

(2)确保所有层的环形地宽度大于2.5mm。

(3)每隔13mm用过孔将环形地连接起来。

(4)将环形地与多层电路的公共地连接到一起。

(5)对安装在金属机箱或者屏蔽装置里的双面板来说,应该将环形地与电路公共地连接起来。不屏蔽的双面电路则应该将环形地连接到机箱地,环形地上不能涂阻焊剂,以便该环形地可以充当ESD的放电棒,在环形地(所有层)上的某个位置处至少放置一个0.5mm宽的间隙,这样可以避免形成一个大的环路。信号布线离环形地的距离不能小于0.5mm。

在能被ESD直接击中的区域,每一个信号线附近都要布一条地线。

I/O电路要尽可能靠近对应的连接器。

对易受ESD影响的电路,应该放在靠近电路中心的区域,这样其他电路可以为它们提供一定的屏蔽作用。

通常在接收端放置串联的电阻和磁珠,而对那些易被ESD击中的电缆驱动器,也可以考虑在驱动端放置串联的电阻或磁珠。

通常在接收端放置瞬态保护器。用短而粗的线(长度小于5倍宽度,最好小于3倍宽度)连接到机箱地。从连接器出来的信号线和地线要直接接到瞬态保护器,然后才能接电路的其他部分。

在连接器处或者离接收电路25mm的范围内,要放置滤波电容。

(1)用短而粗的线连接到机箱地或者接收电路地(长度小于5倍宽度,最好小于3倍宽度)。

(2)信号线和地线先连接到电容再连接到接收电路。

要确保信号线尽可能短。
信号线的长度大于300mm时,一定要平行布一条地线。
确保信号线和相应回路之间的环路面积尽可能小。对于长信号线每隔几厘米便要调换信号线和地线的位置来减小环路面积。
网络中心位置驱动信号进入多个接收电路。

确保电源和地之间的环路面积尽可能小,在靠近集成电路芯片每一个电源管脚的地方放置一个高频电容。
在距离每一个连接器80mm范围以内放置一个高频旁路电容。

在可能的情况下,要用地填充未使用的区域,每隔60mm距离将所有层的填充地连接起来。

确保在任意大的地填充区(大约大于25mm×6mm)的两个相反端点位置处要与地连接。

电源或地平面上开口长度超过8mm时,要用窄的线将开口的两侧连接起来。

复位线、中断信号线或者边沿触发信号线不能布置在靠近PCB边沿的地方。

将安装孔同电路公地连接在一起,或者将它们隔离开来。

(1)金属支架必须和金属屏蔽装置或者机箱一起使用时,要采用一个零欧姆电阻实现连接。

(2)确定安装孔大小来实现金属或者塑料支架的可靠安装,在安装孔顶层和底层上要采用大焊盘,底层焊盘上不能采用阻焊剂,并确保底层焊盘不采用波峰焊工艺进行焊接。

不能将受保护的信号线和不受保护的信号线并行排列。

要特别注意复位、中断和控制信号线的布线。

(1)要采用高频滤波。

(2)远离输入和输出电路。

(3)远离电路板边缘。

PCB要插入机箱内,不要安装在开口位置或者内部接缝处。

要注意磁珠下、焊盘之间和可能接触到磁珠的信号线的布线。有些磁珠导电性能相当好,可能会产生意想不到的导电路径。

如果一个机箱或者主板要内装几个电路板,应该将对静电最敏感的电路板放在最中间。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    184

    文章

    17566

    浏览量

    249407
  • ESD
    ESD
    +关注

    关注

    48

    文章

    2011

    浏览量

    172721
  • 半导体
    +关注

    关注

    334

    文章

    26994

    浏览量

    216073
收藏 人收藏

    评论

    相关推荐

    ESD静电保护

    电子设备严重损坏或操作失常. 静电对器件造成的损坏有显性和隐性两种.隐性损坏在当时看不出来,但器件变得更脆弱,在过压、高温等条件下极易损坏. ESD静电抑制器两种主要的破坏机制是:由ESD
    发表于 11-20 10:23

    如何轻松解决ESD静电问题?

    制成,内部菱形分子以规则离散状排列,当静电电压超过器件的触发电压时,内部分子迅速产生尖端对尖端的放电,将静电在瞬间泄放到地。它最大特点是反应速度快(0.5ns~1ns)、非常低的极间
    发表于 03-01 12:00

    TVS管的ESD静电防护原理

    感应等因素,可以产生几千伏甚至上万伏的静电静电在多个领域造成严重危害。摩擦起电和人体静电是电子工业中的两大危害,常常造成电子电器产品运行不稳定,甚至损坏。  
    发表于 01-14 14:21

    请问产生ESD的形式有哪些?

    我经常说EMI,EMC我们还能了解个大概其,但是ESD这个是什么?它有什么作用?以及可以应用到哪里?我们带着问题一一攻破这些~ESD,即“静电释放”。本文介绍以下内容:ESD
    发表于 11-06 06:24

    ESD静电放电产生的原理和危害

    设备可靠性降低,造成损坏。因此,研究电子设备所造成的ESD原理和危害,避免ESD的发生具有重要意义。  ESD静电放电产生的原理  
    发表于 01-06 17:26

    ESD进行静电屏蔽防护的方法

    电子跨越自由空间的间隙,使空气电离,产生一条通路,电子通过通路中去中和地面上的正电荷,结果就产生出巨大的火花,就是闪电了,同时伴随着响声,就是雷声了。  总的来说,静电不受人们欢迎,
    发表于 01-08 16:08

    ESD基础知识之静电产生原理和形式及危害和静电的防护资料概述

    本文档的主要内容详细介绍的是ESD的基础知识主要内容包括了:1.静电产生原理自 2.静电的危害自 3.静电放电的形式都 4.
    发表于 11-08 09:36 63次下载
    <b class='flag-5'>ESD</b>基础知识之<b class='flag-5'>静电</b>的<b class='flag-5'>产生</b>原理和形式及危害和<b class='flag-5'>静电</b>的防护资料概述

    静电产生原因_静电防护的措施原理

    要防静电首先要知道静电产生原因,所谓静电就是由于电子在不同物质间发生了转移,物质失去了电平衡而导致的,像我们日常的摩擦、碰撞、电磁辐射感应
    的头像 发表于 01-05 03:17 7291次阅读

    静电对策和ESD对策

    和异物粘附等问题更引人关注。为了避免这些问题,只能全力实施各种对策。以下介绍具体对策的一些示例。 防止制造工序中产生次品的静电对策 带电即静电的一个众所周知的原因是由物体或人在运动时的
    的头像 发表于 06-28 17:38 941次阅读
    <b class='flag-5'>静电</b>对策和<b class='flag-5'>ESD</b>对策

    静电咨询及ESD指导

    事项: 1. ESD问题的认识:了解静电产生的原理,明确静电对设备和人员的潜在危害。掌握静电防护知识,确保在相关领域有正确的意识和基本的防护
    的头像 发表于 07-17 09:45 617次阅读
    <b class='flag-5'>静电</b>咨询及<b class='flag-5'>ESD</b>指导

    ESD静电放电有几种主要的破坏机制 ESD失效的原因

    ESD静电放电有几种主要的破坏机制 ESD失效的原因  静电放电(ESD)是由于
    的头像 发表于 01-03 13:42 4578次阅读

    ESD静电放电的原理和危害

    ESD静电放电的原理和危害  ESD静电放电是指当两个物体之间的静电累积达到一定程度时,电荷会突然释放,
    的头像 发表于 01-03 14:29 2327次阅读

    静电ESD整改:原因、影响与解决方案详解?

    静电ESD整改:原因、影响与解决方案详解?|深圳比创达电子
    的头像 发表于 03-13 10:26 825次阅读
    <b class='flag-5'>静电</b><b class='flag-5'>ESD</b>整改:<b class='flag-5'>原因</b>、影响与解决方案详解?

    静电产生原因 如何消除静电

    静电产生原因 1. 摩擦起电 摩擦起电是最常见的静电产生方式。当两种不同材料的物体相互摩擦时,由于它们的电子亲和力不同,会导致电子从一个物
    的头像 发表于 11-05 10:15 287次阅读

    ESD静电静电放电的区别与联系

    在现代电子工业中,静电放电(ESD)是一个不可忽视的问题。它不仅关系到电子产品的可靠性和安全性,还直接影响到生产效率和成本。 一、ESD静电静电
    的头像 发表于 11-20 09:45 111次阅读