0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

盘点TensorFlow在智能终端中的应用

jmiy_worldofai 来源:未知 作者:胡薇 2018-09-29 11:33 次阅读

深度学习在图像处理、语音识别、自然语言处理领域的应用取得了巨大成功,但是它通常在功能强大的服务器端进行运算。

如果智能手机通过网络远程连接服务器,也可以利用深度学习技术,但这样可能会很慢,而且只有在设备处于良好的网络连接环境下才行,这就需要把深度学习模型迁移到智能终端。

由于智能终端CPU和内存资源有限,为了提高运算性能和内存利用率,需要对服务器端的模型进行量化处理并支持低精度算法TensorFlow版本增加了对AndroidiOS和Raspberry Pi硬件平台的支持,允许它在这些设备上执行图像分类等操作。这样就可以创建在智能手机上工作并且不需要云端每时每刻都支持的机器学习模型,带来了新的APP。

本文主要基于看花识名APP应用,讲解TensorFlow模型如何应用于Android系统;在服务器端训练TensorFlow模型,并把模型文件迁移到智能终端;TensorFlow Android开发环境构建以及应用开发API。

看花识名APP

使用AlexNet模型、Flowers数据以及Android平台构建了“看花识名”APP。TensorFlow模型对五种类型的花数据进行训练。如下图所示:

Daisy:雏菊

Dandelion:蒲公英

Roses:玫瑰

Sunflowers:向日葵

Tulips:郁金香

在服务器上把模型训练好后,把模型文件迁移到Android平台,在手机上安装APP。使用效果如下图所示,界面上端显示的是模型识别的置信度,界面中间是要识别的花:

TensorFlow模型如何应用于看花识名APP中,主要包括以下几个关键步骤:模型选择和应用、模型文件转换以及Android开发。如下图所示:

模型训练及模型文件

本章采用AlexNet模型对Flowers数据进行训练。AlexNet在2012取得了ImageNet最好成绩,top 5准确率达到80.2%。这对于传统的机器学习分类算法而言,已经相当出色。模型结构如下:

本文采用TensorFlow官方Slim(https://github.com/tensorflow/models/tree/master/slim)AlexNet模型进行训练。

首先下载Flowers数据,并转换为TFRecord格式:

DATA_DIR=/tmp/data/flowers python download_and_convert_data.py --dataset_name=flowers --dataset_dir="${DATA_DIR}"

执行模型训练,经过36618次迭代后,模型精度达到85%

TRAIN_DIR=/tmp/data/train python train_image_classifier.py --train_dir=${TRAIN_DIR} --dataset_dir=${DATASET_DIR} --dataset_name=flowers --dataset_split_name=train --model_name=alexnet_v2 --preprocessing_name=vgg

生成Inference Graph的PB文件

python export_inference_graph.py --alsologtostderr --model_name=alexnet_v2 --dataset_name=flowers --dataset_dir=${DATASET_DIR} --output_file=alexnet_v2_inf_graph.pb

结合CheckPoint文件和Inference GraphPB文件,生成Freeze Graph的PB文件

python freeze_graph.py --input_graph=alexnet_v2_inf_graph.pb --input_checkpoint= ${TRAIN_DIR}/model.ckpt-36618 --input_binary=true --output_graph=frozen_alexnet_v2.pb --output_node_names=alexnet_v2/fc8/squeezed

对Freeze Graph的PB文件进行数据量化处理,减少模型文件的大小,生成的quantized_alexnet_v2_graph.pb为智能终端中应用的模型文件

bazel-bin/tensorflow/tools/graph_transforms/transform_graph --in_graph=frozen_alexnet_v2.pb --outputs="alexnet_v2/fc8/squeezed" --out_graph=quantized_alexnet_v2_graph.pb --transforms='add_default_attributes strip_unused_nodes(type=float, shape="1,224,224,3") remove_nodes(op=Identity, op=CheckNumerics) fold_constants(ignore_errors=true) fold_batch_norms fold_old_batch_norms quantize_weights quantize_nodes strip_unused_nodes sort_by_execution_order'

为了减少智能终端上模型文件的大小,TensorFlow中常用的方法是对模型文件进行量化处理,本文对AlexNet CheckPoint文件进行Freeze和Quantized处理后的文件大小变化如下图所示:

量化操作的主要思想是在模型的Inference阶段采用等价的8位整数操作代替32位的浮点数操作,替换的操作包括:卷积操作、矩阵相乘、激活函数、池化操作等。量化节点的输入、输出为浮点数,但是内部运算会通过量化计算转换为8位整数(范围为0到255)的运算,浮点数和8位量化整数的对应关系示例如下图所示:

量化Relu操作的基本思想如下图所示:

TensorFlow Android应用开发环境构建

在Android系统上使用TensorFlow模型做Inference依赖于两个文件libtensorflow_inference.so和libandroid_tensorflow_inference_java.jar。这两个文件可以通过下载TensorFlow源代码后,采用bazel编译出来,如下所示:

下载TensorFlow源代码

git clone --recurse-submoduleshttps://github.com/tensorflow/tensorflow.git

下载安装Android NDK

下载安装Android SDK

配置tensorflow/WORKSPACE中android开发工具路径

android_sdk_repository(name = "androidsdk", api_level = 23, build_tools_version = "25.0.2", path = "/opt/android",) android_ndk_repository(name="androidndk", path="/opt/android/android-ndk-r12b", api_level=14)

编译libtensorflow_inference.so

bazel build -c opt //tensorflow/contrib/android:libtensorflow_inference.so --crosstool_top=//external:android/crosstool --host_crosstool_top= @bazel_tools//tools/cpp:toolchain --cpu=armeabi-v7a

编译libandroid_tensorflow_inference_java.jar

bazel build //tensorflow/contrib/android:android_tensorflow_inference_java

TensorFlow提供了Android开发的示例框架,下面基于AlexNet模型的看花识名APP做一些相应源码的修改,并编译生成Android的安装包:

基于AlexNet模型,修改Inference的输入、输出的Tensor名称

private static final String INPUT_NAME = "input"; private static final String OUTPUT_NAME = "alexnet_v2/fc8/squeezed";

放置quantized_alexnet_v2_graph.pb和对应的labels.txt文件到assets目录下,并修改Android文件路径

private static final String MODEL_FILE = "file:///android_asset/quantized_alexnet_v2_graph.pb"; private static final String LABEL_FILE = "file:///android_asset/labels.txt";

编译生成安装包

bazel build -c opt //tensorflow/examples/android:tensorflow_demo

拷贝tensorflow_demo.apk到手机上,并执行安装,太阳花识别效果如下图所示:

(点击放大图像)

TensorFlow移动端应用开发API

在Android系统中执行TensorFlow Inference操作,需要调用libandroid_tensorflow_inference_java.jar中的JNI接口,主要接口如下:

构建TensorFlow Inference对象,构建该对象时候会加载TensorFlow动态链接库libtensorflow_inference.so到系统中;参数assetManager为android asset管理器;参数modelFilename为TensorFlow模型文件在android_asset中的路径。

TensorFlowInferenceInterface inferenceInterface = new TensorFlowInferenceInterface(assetManager, modelFilename);

向TensorFlow图中加载输入数据,本App中输入数据为摄像头截取到的图片;参数inputName为TensorFlow Inference中的输入数据Tensor的名称;参数floatValues为输入图片的像素数据,进行预处理后的浮点值;[1,inputSize,inputSize,3]为裁剪后图片的大小,比如1张224*224*3的RGB图片。

inferenceInterface.feed(inputName, floatValues, 1, inputSize, inputSize, 3);

执行模型推理; outputNames为TensorFlow Inference模型中要运算Tensor的名称,本APP中为分类的Logist值。

inferenceInterface.run(outputNames);

获取模型Inference的运算结果,其中outputName为Tensor名称,参数outputs存储Tensor的运算结果。本APP中,outputs为计算得到的Logist浮点数组。

inferenceInterface.fetch(outputName, outputs);

总结

本文基于看花识名APP,讲解了TensorFlow在Android智能终端中的应用技术。首先回顾了AlexNet模型结构,基于AlexNet的slim模型对Flowers数据进行训练;对训练后的CheckPoint数据,进行Freeze和Quantized处理,生成智能终端要用的Inference模型。然后介绍了TensorFlow Android应用开发环境的构建,编译生成TensorFlow在Android上的动态链接库以及java开发包;文章最后介绍了Inference API的使用方式。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 智能终端
    +关注

    关注

    6

    文章

    886

    浏览量

    34824
  • 深度学习
    +关注

    关注

    73

    文章

    5511

    浏览量

    121398
  • tensorflow
    +关注

    关注

    13

    文章

    329

    浏览量

    60584

原文标题:深度学习利器:TensorFlow在智能终端中的应用

文章出处:【微信号:worldofai,微信公众号:worldofai】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    工业级智能手持终端:仓库盘点与出入库管理的得力助手

    在当今快节奏的商业环境,仓库管理的效率和准确性对于企业的运营至关重要。工业级智能手持终端的出现,为仓库盘点与出入库管理带来了革命性的变化。工业级
    的头像 发表于 01-08 16:09 90次阅读
    工业级<b class='flag-5'>智能</b>手持<b class='flag-5'>终端</b>:仓库<b class='flag-5'>盘点</b>与出入库管理的得力助手

    重磅盘点 | 自连智能终端明星产品系列

    无论工业、医疗、城市还是教育领域,当前各行各业都迎来了智慧升级的快速发展。作为深耕物联网10年的通信老兵,自连自主研发的智能终端产品系列,不同场景中发挥着应有的重要作用。今天,小编
    的头像 发表于 10-24 17:25 205次阅读

    智能AI终端故障诊断具体是如何工作的?

    梯云物联的智能AI终端故障诊断扮演着至关重要的角色。这一系统通过集成先进的物联网技术、大数据分析和人工智能算法,实现了电梯维保与急修的精
    的头像 发表于 10-17 11:46 264次阅读

    如何在Tensorflow实现反卷积

    TensorFlow实现反卷积(也称为转置卷积或分数步长卷积)是一个涉及多个概念和步骤的过程。反卷积在深度学习领域,特别是图像分割、图像超分辨率、以及生成模型(如生成对抗网络GA
    的头像 发表于 07-14 10:46 682次阅读

    TensorFlow是什么?TensorFlow怎么用?

    TensorFlow是由Google开发的一个开源深度学习框架,它允许开发者方便地构建、训练和部署各种复杂的机器学习模型。TensorFlow凭借其高效的计算性能、灵活的架构以及丰富的工具和库,在学
    的头像 发表于 07-12 16:38 773次阅读

    tensorflow和pytorch哪个更简单?

    PyTorch更简单。选择TensorFlow还是PyTorch取决于您的具体需求和偏好。如果您需要一个易于使用、灵活且具有强大社区支持的框架,PyTorch可能是一个更好的选择。如果您需要一个
    的头像 发表于 07-05 09:45 942次阅读

    tensorflow和pytorch哪个好

    tensorflow和pytorch都是非常不错的强大的框架,TensorFlow还是PyTorch哪个更好取决于您的具体需求,以下是关于这两个框架的一些关键点: TensorFlow : 发布时间
    的头像 发表于 07-05 09:42 743次阅读

    tensorflow简单的模型训练

    本文中,我们将详细介绍如何使用TensorFlow进行简单的模型训练。TensorFlow是一个开源的机器学习库,广泛用于各种机器学习任务,包括图像识别、自然语言处理等。我们将从安装
    的头像 发表于 07-05 09:38 743次阅读

    keras模型转tensorflow session

    在这篇文章,我们将讨论如何将Keras模型转换为TensorFlow session。 Keras和TensorFlow简介 Keras是一个高级神经网络API,它提供了一种简单、快速的方式来构建
    的头像 发表于 07-05 09:36 575次阅读

    TensorFlow的定义和使用方法

    TensorFlow是一个由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护的开源机器学习库。它基于数据流编程(dataflow programming)的概念,将复杂的数学运算表示为
    的头像 发表于 07-02 14:14 849次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年取得了显著的进展。构建和训练深度学习模型的过程,深度学习框架扮演着至关重要的角色。Tenso
    的头像 发表于 07-02 14:04 1030次阅读

    工控电脑一体机商业智能终端的应用

     工控电脑一体机商业智能终端的应用,主要体现在其高稳定性、强大的数据处理能力以及适应复杂商业环境的能力上。以下是工控电脑一体机商业
    的头像 发表于 06-20 09:46 521次阅读
    工控电脑一体机<b class='flag-5'>在</b>商业<b class='flag-5'>智能</b><b class='flag-5'>终端</b><b class='flag-5'>中</b>的应用

    手持PDA终端固定资产盘点中的应用方案

    随着科技的迅猛发展,手持式数据采集(PDA)终端已成为企业盘点固定资产不可或缺的工具。借助条码扫描及无线射频识别(RFID)技术,手持PDA终端极大地促进了盘点效率和准确性的提升。以下
    的头像 发表于 06-18 15:06 515次阅读
    手持PDA<b class='flag-5'>终端</b><b class='flag-5'>在</b>固定资产<b class='flag-5'>盘点</b>中的应用方案

    pda手持终端,小型公司使用用于仓库出入库、仓库盘点

    小型公司,PDA手持终端可以很好地满足仓库出入库和盘点的需求,尤其不需要联网的情况下。PDA手持
    的头像 发表于 05-15 10:59 495次阅读
    pda手持<b class='flag-5'>终端</b>,小型公司使用用于仓库出入库、仓库<b class='flag-5'>盘点</b>

    三防平板丨平板终端丨仓库盘点应用

    三防平板是一种能够恶劣环境下使用的电子设备,其具有防水、防尘、抗震等特性,适用于各种场合,包括仓库盘点现代物流行业,对于仓库盘点来说
    的头像 发表于 02-19 09:51 312次阅读
    三防平板丨平板<b class='flag-5'>终端</b>丨仓库<b class='flag-5'>盘点</b>应用