0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用tensorflow快速搭建起一个深度学习项目

lviY_AI_shequ 来源:未知 作者:李倩 2018-10-25 08:57 次阅读

在上一讲中,我们学习了如何利用numpy手动搭建卷积神经网络。但在实际的图像识别中,使用numpy去手写 CNN 未免有些吃力不讨好。在 DNN 的学习中,我们也是在手动搭建之后利用Tensorflow去重新实现一遍,一来为了能够对神经网络的传播机制能够理解更加透彻,二来也是为了更加高效使用开源框架快速搭建起深度学习项目。本节就继续和大家一起学习如何利用Tensorflow搭建一个卷积神经网络。

我们继续以 NG 课题组提供的 sign 手势数据集为例,学习如何通过Tensorflow快速搭建起一个深度学习项目。数据集标签共有零到五总共 6 类标签,示例如下:

先对数据进行简单的预处理并查看训练集和测试集维度:

X_train = X_train_orig/255.X_test = X_test_orig/255.Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).Tprint ("number of training examples = " + str(X_train.shape[0]))print ("number of test examples = " + str(X_test.shape[0]))print ("X_train shape: " + str(X_train.shape))print ("Y_train shape: " + str(Y_train.shape))print ("X_test shape: " + str(X_test.shape))print ("Y_test shape: " + str(Y_test.shape))

可见我们总共有 1080 张 64643 训练集图像,120 张 64643 的测试集图像,共有 6 类标签。下面我们开始搭建过程。

创建placeholder

首先需要为训练集预测变量和目标变量创建占位符变量placeholder,定义创建占位符变量函数:

def create_placeholders(n_H0, n_W0, n_C0, n_y): """ Creates the placeholders for the tensorflow session. Arguments: n_H0 -- scalar, height of an input image n_W0 -- scalar, width of an input image n_C0 -- scalar, number of channels of the input n_y -- scalar, number of classes Returns: X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float" Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float" """ X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X') Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y') return X, Y

参数初始化

然后需要对滤波器权值参数进行初始化:

def initialize_parameters(): """ Initializes weight parameters to build a neural network with tensorflow. Returns: parameters -- a dictionary of tensors containing W1, W2 """ tf.set_random_seed(1) W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) parameters = {"W1": W1, "W2": W2} return parameters

执行卷积网络的前向传播过程

前向传播过程如下所示:CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED

可见我们要搭建的是一个典型的 CNN 过程,经过两次的卷积-relu激活-最大池化,然后展开接上一个全连接层。利用Tensorflow搭建上述传播过程如下:

def forward_propagation(X, parameters): """ Implements the forward propagation for the model Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "W2" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] W2 = parameters['W2'] # CONV2D: stride of 1, padding 'SAME' Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME') # RELU A1 = tf.nn.relu(Z1) # MAXPOOL: window 8x8, sride 8, padding 'SAME' P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME') # CONV2D: filters W2, stride 1, padding 'SAME' Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME') # RELU A2 = tf.nn.relu(Z2) # MAXPOOL: window 4x4, stride 4, padding 'SAME' P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME') # FLATTEN P2 = tf.contrib.layers.flatten(P2) Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn = None) return Z3

计算当前损失

在Tensorflow中计算损失函数非常简单,一行代码即可:

def compute_cost(Z3, Y): """ Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y)) return cost

定义好上述过程之后,就可以封装整体的训练过程模型。可能你会问为什么没有反向传播,这里需要注意的是Tensorflow帮助我们自动封装好了反向传播过程,无需我们再次定义,在实际搭建过程中我们只需将前向传播的网络结构定义清楚即可。

封装模型

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009, num_epochs = 100, minibatch_size = 64, print_cost = True): """ Implements a three-layer ConvNet in Tensorflow: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X_train -- training set, of shape (None, 64, 64, 3) Y_train -- test set, of shape (None, n_y = 6) X_test -- training set, of shape (None, 64, 64, 3) Y_test -- test set, of shape (None, n_y = 6) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: train_accuracy -- real number, accuracy on the train set (X_train) test_accuracy -- real number, testing accuracy on the test set (X_test) parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() tf.set_random_seed(1) seed = 3 (m, n_H0, n_W0, n_C0) = X_train.shape n_y = Y_train.shape[1] costs = [] # Create Placeholders of the correct shape X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y) # Initialize parameters parameters = initialize_parameters() # Forward propagation Z3 = forward_propagation(X, parameters) # Cost function cost = compute_cost(Z3, Y) # Backpropagation optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) # Initialize all the variables globally init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): minibatch_cost = 0. num_minibatches = int(m / minibatch_size) seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 5 == 0: print ("Cost after epoch %i: %f" % (epoch, minibatch_cost)) if print_cost == True and epoch % 1 == 0: costs.append(minibatch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # Calculate the correct predictions predict_op = tf.argmax(Z3, 1) correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy) train_accuracy = accuracy.eval({X: X_train, Y: Y_train}) test_accuracy = accuracy.eval({X: X_test, Y: Y_test}) print("Train Accuracy:", train_accuracy) print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters

对训练集执行模型训练:

_, _, parameters = model(X_train, Y_train, X_test, Y_test)

训练迭代过程如下:

我们在训练集上取得了 0.67 的准确率,在测试集上的预测准确率为 0.58 ,虽然效果并不显著,模型也有待深度调优,但我们已经学会了如何用Tensorflow快速搭建起一个深度学习系统了。

注:本深度学习笔记系作者学习 Andrew NG 的 deeplearningai 五门课程所记笔记,其中代码为每门课的课后assignments作业整理而成。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100517
  • 深度学习
    +关注

    关注

    73

    文章

    5491

    浏览量

    120958
  • tensorflow
    +关注

    关注

    13

    文章

    328

    浏览量

    60490

原文标题:深度学习笔记12:卷积神经网络的Tensorflow实现

文章出处:【微信号:AI_shequ,微信公众号:人工智能爱好者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是深度学习
    的头像 发表于 10-27 11:13 324次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的热门研究方向。以下是些FPGA加速
    的头像 发表于 10-25 09:22 140次阅读

    PyTorch深度学习开发环境搭建指南

    PyTorch作为种流行的深度学习框架,其开发环境的搭建对于深度学习研究者和开发者来说至关重要
    的头像 发表于 07-16 18:29 802次阅读

    TensorFlow是什么?TensorFlow怎么用?

    TensorFlow是由Google开发的开源深度学习框架,它允许开发者方便地构建、训练和部署各种复杂的机器
    的头像 发表于 07-12 16:38 566次阅读

    tensorflow和pytorch哪个更简单?

    PyTorch更简单。选择TensorFlow还是PyTorch取决于您的具体需求和偏好。如果您需要易于使用、灵活且具有强大社区支持的框架,PyTorch可能是
    的头像 发表于 07-05 09:45 759次阅读

    tensorflow和pytorch哪个好

    :2015年由Google Brain团队发布。 语言支持 :主要使用Python,也支持C++、Java等。 设计哲学 :TensorFlow端到端的机器学习平台,支持从研究
    的头像 发表于 07-05 09:42 623次阅读

    tensorflow简单的模型训练

    在本文中,我们将详细介绍如何使用TensorFlow进行简单的模型训练。TensorFlow开源的机器学习库,广泛用于各种机器
    的头像 发表于 07-05 09:38 498次阅读

    keras模型转tensorflow session

    和训练深度学习模型。Keras是基于TensorFlow、Theano或CNTK等底层计算框架构建的。TensorFlow
    的头像 发表于 07-05 09:36 454次阅读

    keras的模块结构介绍

    Keras是高级深度学习库,它提供了易于使用的接口来构建和训练
    的头像 发表于 07-05 09:35 303次阅读

    如何使用Tensorflow保存或加载模型

    TensorFlow广泛使用的开源机器学习库,它提供了丰富的API来构建和训练各种深度学习
    的头像 发表于 07-04 13:07 1282次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的
    的头像 发表于 07-02 14:04 883次阅读

    FPGA在深度学习应用中或将取代GPU

    ,这使得它比般处理器更高效。但是,很难对 FPGA 进行编程,Larzul 希望通过自己公司开发的新平台解决这个问题。 专业的人工智能硬件已经成为了独立的产业,但对于什么是深度
    发表于 03-21 15:19

    如何从零开始构建深度学习项目?(如何启动深度学习项目

    性能重大提升的背后往往是模型设计的改变。不过有些时候对模型进行微调也可以提升机器学习的性能。最终的判断可能会取决于你对相应任务的基准测试结果。
    发表于 01-11 10:49 278次阅读
    如何从零开始构建<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>项目</b>?(如何启动<b class='flag-5'>一</b><b class='flag-5'>个</b><b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>项目</b>)

    如何使用TensorFlow构建机器学习模型

    在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建简单的机器学习模型。
    的头像 发表于 01-08 09:25 907次阅读
    如何使用<b class='flag-5'>TensorFlow</b>构建机器<b class='flag-5'>学习</b>模型

    如何快速搭建MQTT协议的测试环境

    大家好,我是麦叔,之前有小伙伴建议出期如何快速搭建MQTT协议的测试环境,因为自己写的mqtt测试工具总是有这样那样的问题。
    的头像 发表于 12-26 09:28 1979次阅读
    如何<b class='flag-5'>快速</b><b class='flag-5'>搭建</b><b class='flag-5'>一</b><b class='flag-5'>个</b>MQTT协议的测试环境