0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅析共面波导效应对微带传输线的影响

3X1L_gh_f97d258 来源:未知 作者:胡薇 2018-10-25 08:58 次阅读

1 引言

根据射频电路理论,“当信号连接线上所传输的信号的波长可与分立的电路元件的几何尺寸相比拟时,信号线上面电压和电流不再保持空间不变,必须把信号看做是传输的波。此时,低频时的基尔霍夫电压和电流定律都不再适用了,而要把导电线看成射频电路下的传输线。”简而言之,就是当电路在较高频率工作时( 即要传送的信号频率很高时) ,不能再把PCB 上器件引脚间的导线上所有点的电压电流看作是不变的,此时要把传输的信号看成是电磁波。因此,若要传输这个电磁波信号而又要尽可能小地减少信号的损失,那么应该使用传输线来传输,并且要在PCB 信号传输引脚之间进行阻抗匹配。

图1 是高频信号在2个不同元件之间传输时的示意图。从图1 可知,在信号传输过程中,如果PCB上信号传输线的特性阻抗值与这2 个元件的“电子阻抗”完全相匹配时,则传送信号的能量可以全部传送到接收端,这是理想状态。一般情况下,特性阻抗由于受到各种因素影响而不能做到完全匹配。当传输线不匹配或变化偏差过大时,信号在传输过程中将发生反射、散失、衰减或时间延迟等问题; 严重时,甚至会引起传输信号完全“失真”而接收不到原来的真实信号。

图1 元件间高频信号传输示意图

因此,在高频信号范围内进行信号传输时应充分注意传输线的特性阻抗匹配,否则,传送出去的信号或能量会反射或部分反射回来,造成一系列较严重的后果。由于阻抗失配造成的影响包括: 信号或能量无法完整传送出去,使传输线传送效率降低; 失配使部分传送能量以电磁波的形式辐射到空间,形成电磁辐射干扰,影响其他器件正常工作;反射回来的信号或能量将会干扰或抵消再次传送的信号或能量,这样循环往复形成恶性循环,严重时会使传送的信号完全丧失或完全失真。

综上,在射频电路设计时,阻抗匹配是一个非常重要的问题,如果阻抗匹配处理不好,小则影响射频电路的性能,严重时电路完全不能工作。文章所要讨论的共面波导效应就是在PCB 上影响传输线特性阻抗的一个容易被人忽略而又对特性阻抗影响较大的因素。

2 共面波导简介

共面波导是由Cheng P. Wen 所发明,它是一种支持电磁波在同一个平面上传播的结构,通常是在一个电介质的顶部传播。经典的共面波导是在同一个导电介质平面上,由一个导体把一对地平面分割开来所组成,如图2 所示。

在理想情况下,电介质的厚度是无限大的; 在实际情况中,只要满足电磁场在离开基底之前已经不再连续这一条件,就可以近似把这种结构认为是共面波导。如果在电介质的另外一边也加上地平面的话,那么就可以构成另外一种共面波导,被称之为有限地共面波导( FGCPW, finite ground-plane coplanarwaveguide) ,或者直接简单地称之为带地共面波导( GCPW) 。

(a) 共面波导横截面

(b)带地共面波导横截面

图2 共面波导与带地共面波导

共面波导的优点是有源器件可以像微带线那样贴在电路的上层; 更为重要的是它可以提供更高的频率响应( 100 GHz 或者更大) ,因为连接到共面波导不会在地平面引入任何寄生的不连续点。使用共面波导可以得到更高的隔离度,因为在各个射频通路之间都有射频地进行隔离。许多高隔离度的射频开关就是使用带地共面波导获得60 dB 或更高的隔离度。

共面波导可以通过使用保角变换法来进行静态分析。简言之,这种方法把PCB 的几何结构转换成另外一种结构,这种新的结构的特性使得对它的定量计算变得容易实现。

影响共面波导线特性阻抗的因素有: 电路板厚度H、线宽W、电路板介电常数εr、中间信号线与地间距S 以及铜厚t。在所有因素中,对阻抗影响最大的是间距S,S 越大,则对阻抗影响越小; S 越小,则对阻抗的影响越大。其他的影响因素近似与微带线相同,但是,共面波导阻抗的公式比微带线复杂许多,在此不做过多阐述。

3 带地共面波导效应对微带线的影响

在PCB 完成布线后,为了增强电路的抗干扰性能,大多数情况下,电路板设计者会对PCB 进行大面积的覆地。如果覆地处理较好,那么可以有很多好处,但是不注意的话,覆地也会带来很多问题,例如平板电容效应、螺旋电感效应以及文中所讨论的共面波导效应等负面影响。故在此侧重讨论共面波导效应对微带传输线的影响。微带线和共面波导模型如图3所示。

(a) 微带线

(b)共面波导

图3 微带线模型和带地共面波导模型

从图中可以看出,微带线和共面波导很相似,唯一的差别就是在传输信号的主线周围是否存在“地”。因此,如果在PCB 上已经设计好的微带线周围进行覆地的话,那么,微带传输线就可能变成共面波导。在相同PCB参数条件下,微带线与共面波导的特性阻抗是不一样的,共面波导的特性阻抗受“D1”( 如图3 中所示) 影响很大。

常规情况下,在PCB 上面的传输线通常是匹配到50 Ω,如果在设计完成以后再对整个板子进行大面积的覆地,而覆地距传输线又较近的话,就会产生共面波导效应,影响传输线的阻抗,从而影响传输线上信号的传输质量。例如,在铜厚t = 0. 018( 1 /2 盎司) 、板厚h = 1mm 的FR-4 介质板( 介电常数为4. 6)上,利用微带传输线设计阻抗为50 Ω 的传输线时,线宽W =2. 197; 如果在微带线两边等间距覆地的话,那么覆地会对传输线阻抗产生影响。图4 所示是当微带线两边覆地时微带线间隔S 与新的特性阻抗Z 的关系图。

图4 微带线两边加地,当间距为S 时微带线阻抗的变化

从图4 可以明显看出,当微带线与地间距S < 2mm 时,阻抗受间距S 影响较大,特别是间距S < 0. 5mm 时,微带线阻抗变化在20% ~ 50%之间。也就是说,当覆地与微带线之间间距< 0. 5 mm 时,微带线阻抗严重偏离50 Ω( 见图4) ,此时阻抗严重不匹配,将会导致信号传输出现很大的反射和信号失真。

因此,在射频电路板设计中,要非常注意接地的地方与微带线的距离,否则可能带来较严重的后果。

4 共面波导效应在双层PCB 设计中的应用

通常,在设计PCB 上的传输线时,都是考虑使用微带线来实现50 Ω 传输线,因为微带线是非常适合在PCB 上实现的一种结构。共面波导严格说来也是一种传输线,它与微带线有着非常相似的结构,而且因为共面波导传输线比微带线周围多了“地”的存在,从而使共面波导传输线抗干扰能力更好。

图5 是在板厚H = 1. 2mm,εr =4. 6,铜厚t = 0.018mm( 1 /2 盎司) 且S = 0. 254( 10mil) 时,微带线和共面波导线宽与阻抗的关系图( 其中实线是共面波导,虚线是微带线) 。从图中可以看出,在相同阻抗时,共面波导线在电路板上的宽度比微带线的宽度小很多。例如在50Ω 时,利用共面波导得到的线宽比起微带线的线宽小了接近1 mm; 而两种传输线宽度相同时,微带线的阻抗远大于共面波导线的阻抗,基本接近15 Ω。因此可以得出结论: 在PCB 板介质参数即板厚相同的条件下,相同线宽的共面波导的特性阻抗小于微带线特性阻抗; 阻抗相同时,共面波导线宽大大小于微带线线宽。这是一个有用的结论,下面给出一个此结论的应用实例。

图5 使用相同PCB 参数且S = 10 mil 时,

微带线和共面波导线宽与阻抗的关系图

(实线: 共面线; 虚线: 微带)

在进行射频PCB 设计时,当要传输的信号使用微带传输线时,如果使用多层板,此时布50 Ω 微带线的话,可以在顶层( top) 布射频线( 传输线) ,然后把第二层定义成完整的地平面,这样顶层和第二层之间的介质厚度可以人为控制,做到很薄,而顶层的线不用很宽就可以满足50 Ω 的特性阻抗( 在其他相同的情况下,布线越宽,特性阻抗越小) 。

但是,如果使用的是双层板,情况就不一样了。在双层板情况下,为了保证电路板的强度,要选取较厚的电路板材( 至少不小于0. 8 mm) ,这时,介质厚度H 通常就会很大。此时,如果还使用微带线来实现50 Ω 的特性阻抗,那么顶层的走线必须很宽。例如,假设板子的厚度是1. 2 mm,使用FR-4 板材( εr = 4.6) ,铜厚t = 0. 018 mm,使用Polar Si8000 阻抗软件来计算线宽,得到线宽为2. 197 mm。在射频微波频段,这个线宽是很难被接受的,因为此时各种元件的引脚都是很小的,如果电路板大小再有限制的话,2mm 的走线具体实现起来也不容易。

因此,根据前面的分析,可以使用共面波导线来实现50 Ω 传输线。在Polar Si8000 中就有多种共面波导模型,可以选择满足实际应用条件的模型来进行计算。在此选择“surface CoplarWaveguide WithGround1B”,使用与前述相同的条件加上D1 = 7 mil( 0. 178 mm) 来计算线宽。微带线与共面波导模型及参数设置、计算如图6 所示[4]。如图中所示,最后得到线宽W = 0. 9 mm。如果使用更薄一些的板材( 例如微波基片) ,那么线宽可以做得更细,能够满足对线宽的要求。

图6 相同PCB 参数下微带与共面波导线宽的计算

5 结束语

通过以上分析可知,在电路板设计中,共面波导效应对微带传输线有很大的影响,因此在设计中应当十分小心。同时看到,电路板中的共面波导效应既有负面影响又存在有利的一面,应根据具体的需求作出不同的选择。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • pcb
    pcb
    +关注

    关注

    4317

    文章

    23011

    浏览量

    396368
  • 射频
    +关注

    关注

    104

    文章

    5551

    浏览量

    167559

原文标题:共面波导效应对射频电路板的影响及其应用

文章出处:【微信号:gh_f97d2589983b,微信公众号:高速射频百花潭】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    平衡传输线标准的重要性

    对于需要长距离通信的系统。本文将探讨平衡传输线标准的重要性。 一、平衡传输线标准的必要性 1. 提高信号完整性 在长距离传输中,信号完整性是一个关键问题。不平衡传输线容易受到电磁干扰(
    的头像 发表于 10-04 17:26 221次阅读

    用逻辑驱动传输线

    电子发烧友网站提供《用逻辑驱动传输线.pdf》资料免费下载
    发表于 09-21 11:23 0次下载
    用逻辑驱动<b class='flag-5'>传输线</b>

    有损传输线及其特性介绍

    电子发烧友网站提供《有损传输线及其特性介绍.pdf》资料免费下载
    发表于 08-12 14:24 1次下载

    传输线的理论基础

    电子发烧友网站提供《传输线的理论基础.pdf》资料免费下载
    发表于 08-12 09:32 0次下载

    为什么选择hdmi光纤传输线

    HDMI光纤传输线,也称为光纤HDMI线或HDMI光纤线,是一种通过光纤传输高清视频和音频信号的设备。它采用了光纤技术,具有以下主要优势: 高传输
    的头像 发表于 06-05 10:02 395次阅读

    一种新的微带线和矩形波导集成形结构研究

    矩形波导可用于设计高Q值的元件,但需要复杂的转换结构实现与平面电路的集成。目前已经有一些针对微带线和矩形波导转换结构的研究,然而,传统的矩形波导平面结构集成方案体积庞大,通常也需要精密
    的头像 发表于 05-30 14:26 679次阅读
    一种新的<b class='flag-5'>微带线</b>和矩形<b class='flag-5'>波导</b>集成形结构研究

    关于传输线阻抗的那些概念你都知道吗

    如果传输线具有恒定不变的瞬时阻抗,就称之为传输线的特性阻抗   特性阻抗描述了信号沿传输线传播时所受到的瞬态阻抗,这是影响传输线电路中信号完整性的一个主要因素。如果没有特殊说明,一般用
    的头像 发表于 02-02 17:21 1069次阅读
    关于<b class='flag-5'>传输线</b>阻抗的那些概念你都知道吗

    浅谈传输线的特点和工作原理

    对于传输线,通常的研究方法是,对其中某一个小段进行微观的研究。用微积分的思想取其中一小段,这一小段有分布电阻,分布电感,分布电导,分布电容。
    的头像 发表于 02-02 17:03 4409次阅读
    浅谈<b class='flag-5'>传输线</b>的特点和工作原理

    PCB的传输线结构

    传输线的定义是有信号回流的信号线(由两条一定长度导线组成,一条是信号传播路径,另一条是信号返回路径。),很常见的传输线也就是我们PCB板上的走线
    发表于 01-15 15:13 334次阅读
    PCB的<b class='flag-5'>传输线</b>结构

    射频(RF)印刷电路板(PCB)设计和布局的建议

    许多Maxim射频元件要求阻抗受控的传输线,将射频功率传输至PCB上的IC引脚(或从其传输功率)。这些传输线可在外层(顶层或底层)实现或埋在内层。关于这些
    发表于 01-11 15:20 490次阅读
    射频(RF)印刷电路板(PCB)设计和布局的建议

    高速PCB设计基础知识:传输线

    传输线的定义是有信号回流的信号线(由两条一定长度导线组成,一条是信号传播路径,另一条是信号返回路径。),常见的传输线也就是我们PCB板上的走线
    发表于 01-02 15:36 383次阅读
    高速PCB设计基础知识:<b class='flag-5'>传输线</b>

    关于传输线的知识要点

    对于传输线,通常的研究方法是,对其中某一个小段进行微观的研究。用微积分的思想取其中一小段,这一小段有分布电阻,分布电感,分布电导,分布电容。
    的头像 发表于 12-14 14:52 670次阅读
    关于<b class='flag-5'>传输线</b>的知识要点

    普通微带线和CPW/CPWG共面波导结构各自有哪些优点缺点?

    普通微带线和CPW/CPWG共面波导结构各自有哪些优点缺点? 普通微带线和CPW/CPWG共面波导
    的头像 发表于 12-07 14:24 2398次阅读

    介绍几种典型微波传输线和仿真分析

    定向传输微波信号和微波能量的传输线可称之为微波传输线,常用的TEM模传输线有同轴线,微带线,带状线
    的头像 发表于 12-07 10:36 2878次阅读
    介绍几种典型微波<b class='flag-5'>传输线</b>和仿真分析

    一文了解各种常用的微波传输线【综合版】

    定向传输微波信号和微波能量的传输线可称之为微波传输线,常用的TEM模传输线有同轴线,微带线,带状线
    的头像 发表于 12-07 10:36 2405次阅读
    一文了解各种常用的微波<b class='flag-5'>传输线</b>【综合版】