0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何利用仿真技术构建更安全的锂离子电池热管理系统

GIPk_COMSOL_Chi 来源:未知 作者:易水寒 2018-10-28 11:37 次阅读

锂离子电池因其重量轻、能量密度高、无污染等特点,成为了电子产品、交通运输、航空航天等各领域中应用最为广泛的电池类型。然而锂离子电池在充放电过程中若使用不当,可能会引发热失控,进而发生燃烧、爆炸等严重的安全事故(图 1)。因此,锂离子电池热安全成为了电池行业的研究热点。

图 1. 手机电池发生燃烧。

作为中国唯一的火灾科学基础和应用基础研究的国家级重点研究机构,中国科学技术大学火灾科学国家重点实验室(以下简称“火灾实验室”)使用 COMSOL® 软件创建了锂离子电池的电化学-热耦合模型,并根据仿真结果研发出了一种用于锂离子电池系统散热及防止热失控传播的复合板,大幅提升了锂离子电池的热安全性能。

锂离子电池产热规律的仿真及实验分析

许多电池安全事故都是由电池短路引起的。当电池短路时,过大的电流会在电池内部产生大量的热量,导致电池的温度急剧上升。过高的温度会引发电池内部严重的热失控,造成电池燃烧,甚至爆炸。因此,对电池内部热量产生过程的分析是锂电池安全性研究中十分重要的部分。为了能够对电池(组)进行有效的热管理,提高电池的安全性,火灾实验室的研究人员选取了商用的钛酸锂软包电池作为实验对象,通过实验和仿真两种方法对锂离子电池循环充放电的产热过程和热量分布进行了研究。

研究人员首先使用 COMSOL 多物理场仿真软件建立了电池的三维电化学模型,模型耦合了电场和温度场,可用于探究电池内部及表面的温度变化。为了验证模型的准确性,研究人员对电池表面的温度进行了实际测量。研究人员将锂电池放置到绝热加速量热仪(ARC)中,然后利用充放电循环仪对电池进行循环充放电,并用热电偶记录电池表面的温度变化。通过比较仿真和测量得到的电池表面温度数据,研究人员可以深入了解模型参数设置的合理性。

图 2 显示了使用仿真及实验方法得出的锂离子电池温升曲线,实线为绝热条件下的实验测试结果,虚线为无冷却条件下的仿真结果。在隔绝热量交换的条件下,当电池以1.0C(C 为充放电倍率,用于描述相对于电池额定容量的充放电速率) 进行充放电循环时,电池温升的仿真结果与实验数据完美契合,很好地模拟了电池的产热过程,为后续电池热失控的研究提供了基础。

图 2. 绝热 1.0 C充放电循环条件下锂离子电池温升的实验值与模拟值对比图。

研究人员接着对自然对流条件下不同充放电倍率时电池的温升进行了研究,自然对流条件下不同充放电倍率时电池温升的对比见图 3。可以看出,随着电池充放电倍率的增加,电池的温升明显增大。这主要是因为电化学反应产热与焦耳热呈正比,并与电流的平方呈正比。研究人员同时对充放电循环中产生热量最高的阶段进行了分析。从温度变化曲线可以看出,电池出现了两个温度峰:一个温度峰对应的是放电过程和充电过程之间的转换阶段,主要是因为放电阶段产热速率大于充电阶段;另一个温度峰对应的是恒压充电末期,由于负极嵌锂接近饱和,内阻增大,产热更多。

图 3. 自然对流条件下不同充放电倍率时电池温升的对比。

锂离子电池热失控分析

电池在实际热失控过程中,由于温度过高会产生很多副反应,而这些副反应的产热是热失控过程后期的主要热源,但现有的很多热失控模型并未考虑到这部分化学反应产热。研究团队综合考虑了不同荷电状态(state of charge,简称SOC)下电池系统可能的反应特性和产热特性,将其耦合到电池的热平衡方程中,并对一维电化学模型和三维热模型进行联合,建立了耦合化学反应热的热失控模型。

研究人员在 COMSOL 软件中模拟了电池发生热失控的过程,得到了电池内部温度变化历程、电池发生热失控的时刻等参数。图4中的左图和右图分别为1Ah和 50Ah 钛酸锂电池的热失控过程。对比两个具有不同容量的电池,可以发现两者之间的相似之处在于,当电池内的温度上升至隔膜熔断温度 170℃ 左右时,电池发生内短路,内部的材料发生了化学反应,短时间内突然释放出大量的热从而引发热失控。在绝热工况下,电池温度随着充放电循环次数的增加而升高。热失控发生时,电池内部的中间部位温度最高。随着充放电电流的增加,电池产热速率增大。相比于没有考虑化学反应产热的模型,考虑反应产热的模型引发热失控的时刻明显提前,热失控的危险也更大。

锂离子电池热管理系统

电池在使用过程中产生的热量如果不能及时移除,将会导致严重的后果。因此,设计人员需要使用热管理系统来控制电池组的温度。锂离子电池热管理系统的主要目的是保证电池处于最佳的工作温度范围以及保证电池组中各部位的温度均匀。设计人员通常用两个参数来衡量热管理系统是否有效,一个是电池组的最高温度,另一个是电池组内的最大温差。电池组中包含失控阻隔,用于防止连锁热失控。增加阻隔措施,会导致系统散热效率降低,引起电池温度分布不均;而降低隔离措施可增强电池间的散热效率,但会增强热失控的传播。因此,设计新型的热管理系统需要解决电池热失控阻隔与系统散热之间的矛盾,使两者能够协同作用,兼顾电池组的散热能力和热失控的阻隔能力。

针对此问题,火灾实验室的研究团队提出了一种基于复合板结构的电池热管理系统。复合板由导热壳、隔热板、相变材料组成,呈现三明治结构,如图 5 所示。外面的导热壳能将单体电池产生的热量转移到相变材料和环境中,提高了电池组的散热能力;内部填充的相变材料能吸收大量热量,保证电池在正常温度范围之内工作,并极大地提高了电池组温度的均一性;中间的隔离板能阻止热量直接穿过复合板,可以有效隔离热失控单体电池产生的热量,使得电池的热失控局限在单一电池内,从而防止电池组发生连锁热失控。

图 5. 上图:基于复合板的电池热管理系统结构图;中图:复合板结构立体图;下图:复合板结构俯视图。图注:battery:电池;anodeand cathode:正极和负极;battery box:电池箱;composite board or other structure:复合板或其他结构;heat conducting shell:导热壳;insulation panel:隔热板;PCM:相变材料

研究团队随后对电池间不同阻隔材料的影响进行了研究,模拟了正常工况下电池组间无阻隔,及不同阻隔方式(空气、散热板、复合板)下的温度分布(图 6)。可以看出,使用了复合板热管理系统的电池的最高温度有了显著降低(9℃ 左右),温度均一性也有了明显提高。通过进一步仿真分析,研究人员发现该结构还能够延长热失控的扩散时间,从而降低热失控的风险。

图 6. 3.0C放电完成后电池组的温度分布图。a:电池间紧密贴合;b:电池间空气间隔;c:电池间有散热板;d:电池间有复合板。

由仿真分析结果可以看出,火灾实验室提出的复合板热管理系统能够提高电池组的散热能力及电池组温度的均一性,同时还能够有效地阻隔热失控传播,从而提高电池组的安全性。目前该研究成果已获得中国国家专利。

火灾实验室锂离子电池热管理研究团队负责人王青松表示:“COMSOL 软件为我们的研究带来了极大的便利,当有新的想法时,可以直接进行建模仿真,通过模拟结果初步对设计进行分析,不断进行调整优化,待设计想法较为成熟后,可以通过实验进行进一步验证进而推广使用。这种方式不仅大幅加快了研究进度,同时由于无需购买材料或者搭建实验台,还节省了大量的科研经费。COMSOL 软件已经成了我们研究中不可或缺的工具,帮助我们获得了丰硕的研究成果。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3238

    浏览量

    77685
  • 仿真
    +关注

    关注

    50

    文章

    4070

    浏览量

    133552
  • COMSOL
    +关注

    关注

    34

    文章

    93

    浏览量

    55712

原文标题:构建更安全的锂离子电池热管理系统,仿真助你一臂之力

文章出处:【微信号:COMSOL-China,微信公众号:COMSOL】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    拆解:高压锂离子电池管理——安全供电的保证

    `  作者: Stephen Evanczuk  在雪佛兰Volt轿车的中心有一个复杂的电源组管理系统,用于确保给Volt传动系统提供电源的多单元锂离子电池组的
    发表于 12-20 13:56

    锂离子电池的类型

    电池则只会出现气鼓。② 电池厚度小,可制作得薄 普通液态锂离子电池采用先定制外壳,后塞正负极材料的方法,厚度做到3.6mm以下存在技术瓶颈
    发表于 05-17 10:21

    锂离子电池集成保护电路的基本功能

    锂离子电池充电。通过设定过充检测电压可提高锂离子电池安全性(防止内压上升)。为防止采用脉冲充电方式及由于噪声而引起过充电保护误动作,需要设定延迟时间,集成保护电路可以利用外接电容来
    发表于 05-24 10:54

    波音787起火事件,再看锂离子电池安全

    公司已经派遣专门团队前往全球多个地点,开始在787上安装改进后的787电池系统。笔者注意到:伴随着波音787客机不断曝出的安全隐患,众多的专业人士将目光再次聚焦到飞机所使用的锂离子电池
    发表于 05-24 17:57

    动力锂离子电池安全

    阻燃剂或过充电保护添加剂的电解液,设计良好的散热结构和电池保护电路和管理系统都有利于提高锂离子电池安全性,所以大容量动力
    发表于 05-25 10:54

    锂离子电池的性能

    的温度特性 由于锂离子电池在电解液和电极片中的迁移速率与温度密切相关,因此温度的上下波动会显著影响锂离子电池技术性能。① 储藏温度:一般情况下,锂离子电池由于内部有液体,在低温情况下
    发表于 06-13 13:36

    锂离子电池的制造概述

    型号的电动汽车采用大约6800 个18650 锂离子电 池单元,重达450 kg。由于这个原因,电池生产需要制造速度 快、效率更高以及控制更精确以满足市场的价格需求。锂离子电池制造概
    发表于 02-27 17:16

    锂离子电池充放电安全电池检测设计

      手机的锂离子电池充电安全性日益受到消费者重视,因此充电器制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善电池检测及保护功能的充电芯片,以降低过电流、过电压或过温
    发表于 09-30 16:00

    锂离子电池管理系统的简单设计(毕业作品)

    有关于锂离子电池管理系统的资料是在毕业设计的基础上进行整理,里面有许多不足之处还需要进行修改和讨论。只可作为借鉴。
    发表于 05-31 11:01

    ADI锂离子电池测试设备的解决方案

    的解决方案正是为此而推出。  系统设计考虑因素  效率:  笔记本电脑、手机和类似便携设备中锂离子电池的容量通常很小,典型值是数安时。但是,用于车辆或储能的锂离子电池容量则高得多,通常在数十甚至数百安时左右
    发表于 07-09 10:46

    锂离子电池主要有哪些类型

      锂离子电池主要有哪些类型  1、根据锂离子电池所用电解质材料不同,锂离子电池可以分为液态锂离子电池(简称LIB)和聚合物锂离子电池(简称
    发表于 11-03 15:41

    锂离子电池简介

      锂离子电池简介  锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之
    发表于 11-03 16:11

    如何保证锂离子电池安全的设计

    保证锂离子电池安全的设计
    发表于 02-26 08:35

    电动汽车热管理系统和性能

    ,因此保持电池的适当温度范围变得至关重要。此外,热跑道、冷却系统泄漏等可能会影响续航里程、寿命和安全性。2.热管理系统在电动汽车中的复杂性
    发表于 04-23 16:36

    锂离子电池充放电基础知识

    附近没有这样的设施,可以把它们放在一个普通的垃圾袋里,这样废物管理设施就可以很容易地收集它们。【新课推荐】45天BMS锂离子电池管理系统设计实战线上特训班45天BMS
    发表于 04-24 10:30