0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【连载】深度学习笔记12:卷积神经网络的Tensorflow实现

人工智能实训营 2018-10-30 18:50 次阅读

在上一讲中,我们学习了如何利用 numpy 手动搭建卷积神经网络。但在实际的图像识别中,使用 numpy 去手写 CNN 未免有些吃力不讨好。在 DNN 的学习中,我们也是在手动搭建之后利用 Tensorflow 去重新实现一遍,一来为了能够对神经网络的传播机制能够理解更加透彻,二来也是为了更加高效使用开源框架快速搭建起深度学习项目。本节就继续和大家一起学习如何利用 Tensorflow 搭建一个卷积神经网络。

我们继续以 NG 课题组提供的 sign 手势数据集为例,学习如何通过 Tensorflow 快速搭建起一个深度学习项目。数据集标签共有零到五总共 6 类标签,示例如下:


先对数据进行简单的预处理并查看训练集和测试集维度:

X_train = X_train_orig/255.
X_test = X_test_orig/255.
Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T
print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))

640?wx_fmt=png
可见我们总共有 1080 张 64643 训练集图像,120 张 64643 的测试集图像,共有 6 类标签。下面我们开始搭建过程。

创建 placeholder

首先需要为训练集预测变量和目标变量创建占位符变量 placeholder ,定义创建占位符变量函数:

def create_placeholders(n_H0, n_W0, n_C0, n_y):  
""" Creates the placeholders for the tensorflow session. Arguments: n_H0 -- scalar, height of an input image n_W0 -- scalar, width of an input image n_C0 -- scalar, number of channels of the input n_y -- scalar, number of classes Returns: X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float" Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float" """ X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X') Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y')
return X, Y
参数初始化

然后需要对滤波器权值参数进行初始化:

def initialize_parameters():  
""" Initializes weight parameters to build a neural network with tensorflow. Returns: parameters -- a dictionary of tensors containing W1, W2 """ tf.set_random_seed(1) W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) parameters = {"W1": W1,
"W2": W2}
return parameters
执行卷积网络的前向传播过程

640?wx_fmt=png
前向传播过程如下所示:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED


可见我们要搭建的是一个典型的 CNN 过程,经过两次的卷积-relu激活-最大池化,然后展开接上一个全连接层。利用
Tensorflow 搭建上述传播过程如下:

def forward_propagation(X, parameters):  
""" Implements the forward propagation for the model Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "W2" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] W2 = parameters['W2']
# CONV2D: stride of 1, padding 'SAME' Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME')
# RELU A1 = tf.nn.relu(Z1)
# MAXPOOL: window 8x8, sride 8, padding 'SAME' P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')
# CONV2D: filters W2, stride 1, padding 'SAME' Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME')
# RELU A2 = tf.nn.relu(Z2)
# MAXPOOL: window 4x4, stride 4, padding 'SAME' P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')
# FLATTEN P2 = tf.contrib.layers.flatten(P2) Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn = None)
return Z3
计算当前损失

Tensorflow 中计算损失函数非常简单,一行代码即可:

def compute_cost(Z3, Y):  
""" Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y))
return cost

定义好上述过程之后,就可以封装整体的训练过程模型。可能你会问为什么没有反向传播,这里需要注意的是 Tensorflow 帮助我们自动封装好了反向传播过程,无需我们再次定义,在实际搭建过程中我们只需将前向传播的网络结构定义清楚即可。

封装模型
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
     num_epochs = 100, minibatch_size = 64, print_cost = True):  
""" Implements a three-layer ConvNet in Tensorflow: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X_train -- training set, of shape (None, 64, 64, 3) Y_train -- test set, of shape (None, n_y = 6) X_test -- training set, of shape (None, 64, 64, 3) Y_test -- test set, of shape (None, n_y = 6) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: train_accuracy -- real number, accuracy on the train set (X_train) test_accuracy -- real number, testing accuracy on the test set (X_test) parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() tf.set_random_seed(1) seed = 3 (m, n_H0, n_W0, n_C0) = X_train.shape n_y = Y_train.shape[1] costs = [] # Create Placeholders of the correct shape X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
# Initialize parameters parameters = initialize_parameters()
# Forward propagation Z3 = forward_propagation(X, parameters)
# Cost function cost = compute_cost(Z3, Y)
# Backpropagation optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) # Initialize all the variables globally init = tf.global_variables_initializer()
# Start the session to compute the tensorflow graph with tf.Session() as sess:
# Run the initialization sess.run(init)
# Do the training loop for epoch in range(num_epochs): minibatch_cost = 0. num_minibatches = int(m / minibatch_size) seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
for minibatch in minibatches:
# Select a minibatch (minibatch_X, minibatch_Y) = minibatch _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) minibatch_cost += temp_cost / num_minibatches
# Print the cost every epoch if print_cost == True and epoch % 5 == 0:
print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
if print_cost == True and epoch % 1 == 0: costs.append(minibatch_cost)
# plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # Calculate the correct predictions predict_op = tf.argmax(Z3, 1) correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))
# Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy) train_accuracy = accuracy.eval({X: X_train, Y: Y_train}) test_accuracy = accuracy.eval({X: X_test, Y: Y_test}) print("Train Accuracy:", train_accuracy) print("Test Accuracy:", test_accuracy)

return train_accuracy, test_accuracy, parameters

对训练集执行模型训练:

_,_,parameters=model(X_train,Y_train,X_test,Y_test)

训练迭代过程如下:

640?wx_fmt=png


我们在训练集上取得了 0.67 的准确率,在测试集上的预测准确率为 0.58 ,虽然效果并不显著,模型也有待深度调优,但我们已经学会了如何用 Tensorflow 快速搭建起一个深度学习系统了。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4773

    浏览量

    100889
  • AI
    AI
    +关注

    关注

    87

    文章

    31097

    浏览量

    269423
  • 人工智能
    +关注

    关注

    1792

    文章

    47409

    浏览量

    238921
  • 机器学习
    +关注

    关注

    66

    文章

    8424

    浏览量

    132764
  • 卷积神经网络

    关注

    4

    文章

    367

    浏览量

    11882
收藏 人收藏

    评论

    相关推荐

    卷积神经网络实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员和开发者提供了
    的头像 发表于 11-15 15:20 285次阅读

    深度学习中的卷积神经网络模型

    深度学习近年来在多个领域取得了显著的进展,尤其是在图像识别、语音识别和自然语言处理等方面。卷积神经网络作为深度
    的头像 发表于 11-15 14:52 364次阅读

    卷积神经网络的应用场景及优缺点

    卷积神经网络(Convolutional Neural Networks,简称CNNs)是一种深度学习架构,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。 一、
    的头像 发表于 07-11 14:45 760次阅读

    卷积神经网络的基本概念、原理及特点

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习算法,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。本文将详细介绍
    的头像 发表于 07-11 14:38 1127次阅读

    卷积神经网络实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍
    的头像 发表于 07-03 10:49 564次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍
    的头像 发表于 07-03 09:40 490次阅读

    卷积神经网络的基本结构和工作原理

    和工作原理。 1. 引言 在深度学习领域,卷积神经网络是一种非常重要的模型。它通过模拟人类视觉系统,能够自动学习图像中的特征,从而
    的头像 发表于 07-03 09:38 689次阅读

    cnn卷积神经网络分类有哪些

    卷积神经网络概述 卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度
    的头像 发表于 07-03 09:28 645次阅读

    卷积神经网络训练的是什么

    、训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积神经网络
    的头像 发表于 07-03 09:15 437次阅读

    深度学习卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识
    的头像 发表于 07-02 18:19 929次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。
    的头像 发表于 07-02 16:47 612次阅读

    卷积神经网络的基本结构及其功能

    。 引言 深度学习是机器学习的一个分支,它通过模拟人脑神经网络的结构和功能,实现对数据的自动学习
    的头像 发表于 07-02 14:45 2348次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍
    的头像 发表于 07-02 14:44 675次阅读

    卷积神经网络和bp神经网络的区别

    化能力。随着深度学习技术的不断发展,神经网络已经成为人工智能领域的重要技术之一。卷积神经网络和BP神经
    的头像 发表于 07-02 14:24 4338次阅读

    详解深度学习神经网络卷积神经网络的应用

    处理技术也可以通过深度学习来获得更优异的效果,比如去噪、超分辨率和跟踪算法等。为了跟上时代的步伐,必须对深度学习神经网络技术有所
    的头像 发表于 01-11 10:51 2212次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、<b class='flag-5'>神经网络</b>与<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>的应用