0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Ku波段高速宽带射频通信系统利用波束赋形技术

iIeQ_mwrfnet 来源:未知 作者:李倩 2018-11-06 16:26 次阅读

本文射频通信系统基于Ku波段,综合运用了多通道MIMO技术、智能电扫阵列天线、OFDM波束成形、超高速跳频、低相噪低杂散频率合成等先进性技术,可用于干线节点实现超高速数传、组网、中继,并具有较好的抗干扰能力,可广泛应用于多种通信领域。

引言

当今的信息大爆炸时代,媒质承载的信息量越来越大,特别是高清多媒体视频流,对信息传输的实时性要求越来越高,这些需求促使信息传输速率逐步攀升,现阶段无线通信技术蓬勃发展,LTE5G技术接踵而至。由香农定理我们可知,无线通信的速率与信道带宽相互关联,带宽越宽,速率就越高,容量也就越大。而在VHF、UHF、L、S等较低频段,频谱资源拥挤,可用带宽有限,因此向更高的频段发展,以获得更宽的信道带宽,是未来通信系统发展的必然趋势。

1、系统方案设计

本文提出的Ku波段高速宽带射频通信系统利用波束赋形技术,用呈90°分布的4面阵列天线覆盖全360°范围,每面阵列天线由4列阵元组成,分别连接4个TR组件,经幅度及相位加权后汇集到同1路变频通道,组成4*4 射频MIMO系统。公共资源及上层管理全部集中到中央单元,以方便互联。在车载型结构中,中央单元通过连接器与各TR组件相连,以信令交互进行控制,各TR组件具有独立的基带处理单元,也可将数字中频送到中央处理器集中处理(实现空间分集),总体框图如下图1所示。

图1、系统总体框图

与传统的单收单发系统相比,本系统方案基于军事战术应用抗干扰、保密、高速、大容量、自适应的整体需求,综合考量Ku波段信号自身波长短,方向性较强、传输损耗大等不利因素,采用了主流的OFDM调制技术,使得系统的抗干扰能力更强,同时可以获得较高的频谱利用率;采用了MIMO及智能天线技术,合理利用波束分集和天线空间复用的性能,使得系统能够尽可能地支持多用户,多方向、自适应的大容量数据传输的前提下,可以有效

抵抗信号传输过程中多径衰落对系统性能造成的影响。系统的初步布局如下图2所示:

图2、系统初步布局图

2、子系统方案设计

2.1天线设计

为了降低系统整体轮廓,天线部分采用均匀线阵形式的微带天线,可利用阵列波束赋形技术,实现高定向性、宽覆盖和抗衰落。该种类型天线设计通过对天线阵元的激励源进行幅/相加权,实现多扇面扫描。此外还可以实现对干扰源测向,若检测到干扰,则通过波束赋形,使天线方向图在干扰方向形成零陷,抑制干扰。天线系统的主副辦扫描示意图如下图3所示。

图3、天线阵列及主副辦扫描示意图

2.2收发链路设计

收发链路包括TR组件及变频通路,可根据需求灵活裁剪,在微波射频前端采用了全数字的移相衰减器,在变频电路中,采用了超外差二次变频电路,混频方式为高射频低本振,降低频率合成器的实现难度,此外电路中设计AGC控制电路、保护隔离电路,频率选择电路对接收的信号进行选频、变频、线性化放大处理,最终提供给基带处理器进行信号解调。收发链路的原理框图如下图4所示。

图4、收发链路原理框图

2.3频率合成器设计

通常来说,可用的频率合成方式有直接频率合成(DS)、间接频率合成(PLL)以及直接数字式频率合成(DDS)三种。

本设计中的频率合成器通过方案最终采用DDS倍频与PLL点频源混频实现最终的跳频源一本振输出,而接收和发射相位校准参考源则直接采用了PLL跳频输出的方式实现,总的频率源合成方案如图5所示,方案的整体思想是将晶振信号经一分四的功分器分成4路,一路信号作为发射和接收相位校准参考频率源的时钟,经PLL跳频锁定产生C波段的信号,然后经滤波和二倍频输出Ku波段的参考频率源;另一路信号作为基带处理器的参考时钟;第三路信号作为C波段点频源的参考时钟,经PLL锁定产生C波段的点频信号,然后与DDS输出的跳频信号混频产生上变频C波段的射频信号,再经二倍频最终产生X波段的一本振信号;最后一路信号作为L波段点频源的参考时钟,经PLL锁定产生L波段的点频信号,再功分两路,一路经滤波放大作为系统二本振,另一路作为跳频DDS的参考时钟,产生VHF频段的跳频信号,经滤波、放大及两次2倍频产生L波段的跳频信号与C波段点频源进行混频、滤波、放大、倍频产生X波段一本振信号。在频率源实现过程中,由于涉及到了较多的PLL频率合成、倍频、混频、放大等电路,因此变频过程中的杂散抑制或者规避就显得尤为重要,否则杂散信号的干扰将影响系统的通信质量。

图5、频率合成器原理框图

3、散热设计

经过模型仿真,在大功率连续波情况下,若散热性能不佳,不但会降低功放输出的功率,严重时甚至还会使功率器件烧毁,因此功放局部的热设计同样是系统设计成败的关键。一般将功放器件有源区称为结或者沟道,器件的有源区温度称为结温或者沟道温度Tch。为了保证器件不被烧毁,其沟道温不能超过一个最高允许温度Tchmax,其大小由晶体管机构、管芯材料、衬底材料等因素决定。功率器件自身的散热能力用热阻Rt来表征,定义为Rt=Δt/Q,其中Δt代表温差,Q为热流量。Rt的单位为℃/W,热阻与管芯和衬底材料的导热率、厚度、截面积、加工工艺以及封装形式都有关系。通过热阻可以计算出沟道温度Tch,其计算公式为:

Tch=RtxPdiss+T0

其中Pdiss为耗散功率,T0为环境温度。从公式中可以看出,热阻越大功放的散热能力就越差。实际情况中,除了功放器件自身的热阻外,还有安装功放的腔体热阻R1、散热器热阻R2以及各个部分之间接触不紧密或材料导热系数差异带来的接触热阻Rc,因此完整的沟道温度Tch的计算公式为:

Tch= (Rt+R1+R2+Rc)xPdiss+T0

除了功率器件自身的热阻Rt之外,其它的热阻都难以得到,因而为了方便计算,将上述公式中不容易得到的参数项合并到最后一项中,使其表征为一个相对的环境温度,得到如下计算公式:

Tch=RtxPdiss+ [(R1+R2+Rc)xPdiss+T0] =RtxPdiss+T’0

其中T’0为功放器件管壳的温度,若器件和腔体紧密接触能够良好地传热,即可忽略器件与腔体的接触电阻,这是T’0表示的是与功放器件相接触位置腔壁的温度。将Tch取为Tchmax,通过上述公式可以计算出耗散功率Pdiss的情况下,功放器件可承受的最高腔壁温度。通过极限温度以及耗散功率即可对散热结构进行仿真设计。理论上,只要保证Tch

目前工程上常用的散热方式有肋片散热、相变冷却、热管传热、温差电制冷等。使用最多的散热方式是肋片散热齿,按照散热齿结构的不同又可分为片式散热齿和柱式散热齿。柱式散热齿风道不封闭,散热效果不如片式散热齿明显,故在本系统方案中采用了片式散热齿的散热方式,理论上散热齿越高散热效果越好,但是齿本身的宽度和齿间距也会对散热效果有影响,其散热效果可通过热设计软件来仿真优化(Flotherm)。散热齿采用铝材,兼顾系统减重的要求,系统设计的散热底座设计结构如下图6所示,基本可以满足系统的散热需求。

图6、散热底座外形结构图

除上述辅助散热设计策略外,工程中还在功放底部增加了导热硅脂、导热胶等,同时各T/R组件分散布局,降低热源的集中,增强系统的可靠性。

4、工程设计验证

依据系统设计方案,我们测试天线,频率合成器工程测试结果与设计基本相当,典型的频率合成器DDS+PLL的相位噪声及跳频时间测试曲线如下图7-8所示:

图7、DDS相位噪声及跳频时间测试曲线

图8、PLL相位噪声及跳频时间测试曲线

测试收发链路指标,当中频输入140MHz调制信号,调制方式为64QAM,滚降因子设置0.3,符号率30Mbps时,其典型的发射EVM为6.09%,邻道抑制比优于-35dBC@50MHz offset,测试结果如图9所示:

图9、发射EVM及邻道抑制比测试结果

5、应用场景

现阶段基于Ku波段的高速宽带射频通信系统主要应用于点对点,点对多点,中继及多级自组网等领域,可以极大的拓展节点通信的性能和系统容量,其主要的应用场景示意如下图10所示。

图10、应用场景示意

6、结束语

本文提出的Ku波段高速宽带射频通信系统设计综合运用了多通道MIMO技术、智能电扫阵列天线、OFDM波束成形、超高速跳频、低相噪低杂散频率合成等先进性技术,采用微波平面阵列,可用于干线节点实现超高速数传、组网、中继,并具有较好的抗干扰能力,可广泛应用于多种通信领域,已研制样机性能基本上符合预期的设计需求,实际工程验证结果良好。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 射频
    +关注

    关注

    104

    文章

    5573

    浏览量

    167694
  • 通信系统
    +关注

    关注

    6

    文章

    1187

    浏览量

    53327

原文标题:Ku波段高速宽带射频通信系统设计与实现

文章出处:【微信号:mwrfnet,微信公众号:微波射频网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【微波射频放大器资料】

    低噪声放大器的关键技术研究 8页29 宽带射频功率放大器的匹配电路设计 3页30 Ku波段固态高速
    发表于 08-17 16:17

    波导转换器实现C波段卫星天线秒变Ku波段卫星天线

    转换装置安装方便、简单实用,接收性能指标优良,可达到广播级的使用要求。一、研发背景卫星通信在广电系统发射台站应用非常普及,目前常用的卫星接收天线分为C波段Ku
    发表于 06-13 06:16

    关于TD-LTE双流波束赋形天线技术的全面介绍

    双流波束赋形技术是TD-LTE的多天线增强型技术,是TD-LTE建网的主流技术,结合了智能天线波束
    发表于 06-17 07:36

    Ku波段高速宽带射频通信系统设计方案

    摘要:本文射频通信系统基于Ku波段,综合运用了多通道MIMO技术、智能电扫阵列天线、OFDM
    发表于 07-10 07:33

    Massive MIMO和波束赋形有什么关系

    的一种方案是通过这些同一频率资源与多台空间上分离的用户终端同时通信利用多径传输,故通过基站提升效率是方案之一。这种技术常被称为massive MIMO(大规模多入多出)。您可能听到过massive MIMO被描述为大量天线的
    发表于 07-17 06:28

    什么是LTE双流波束赋形技术

    波束赋形(Beamforming,BF)是自适应阵列智能天线的一种实现方式,是一种在多个阵元组成的天线阵列上实现的数字信号处理技术。它利用有用信号和干扰信号在DoA(到达角)等空间信道
    发表于 08-16 07:49

    什么是波束赋形技术

    波束赋形的目标是根据系统性能指标,形成对基带(中频)信号的最佳组合或者分配。具体地说,其主要任务是补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰。因此
    发表于 08-16 06:02

    5G波束赋形和超级上行技术

    : (点击图片跳转至“5G宗师”漫画)首先介绍「波束赋形技术」,作为5G的难点场景之一,高铁等高速移动场景非常考验芯片的通信能力。在麒麟芯片
    发表于 05-13 09:04

    什么是波束赋形

    更为聚焦,从而照地更远。无线基站也是同理,如下图所示,如果天线的信号全向发射的话,这几个手机只能收到有限的信号,大部分能量都浪费掉了。而如果能通过波束赋形把信号聚焦成几个波束,专门指向各个手机发射的话,承载信号的电磁能量就能传播
    发表于 06-20 07:50

    关于波束赋形技术你想知道的都在这

    什么是发射波束赋形技术?怎么实现发射波束赋形技术
    发表于 05-25 06:31

    TD-SCDMA系统信道波束赋形

    TD-SCDMA系统信道波束赋形
    发表于 09-18 15:18 464次阅读

    X/Ku频段波束赋形器演示

    ADI公司推出一款四通道X/Ku频段波束赋形IC,可实现相控阵模拟波束赋形的商业化。本演示利用
    的头像 发表于 06-07 13:46 3252次阅读

    如何利用两个波束赋形IC形成八通道线性阵列

    ADI公司推出一款四通道X/Ku频段波束赋形IC,可实现相控阵模拟波束赋形的商业化。本演示利用
    的头像 发表于 07-04 06:12 2314次阅读

    基于Ku波段的多通道MIMO高速宽带射频通信系统设计方案

    本文射频通信系统基于Ku波段,综合运用了多通道MIMO技术、智能电」阵列天线、OFDM
    发表于 07-30 10:27 0次下载
    基于<b class='flag-5'>Ku</b><b class='flag-5'>波段</b>的多通道MIMO<b class='flag-5'>高速</b><b class='flag-5'>宽带</b><b class='flag-5'>射频</b><b class='flag-5'>通信系统</b>设计方案

    基于Ku波段的车载应急卫星通信系统

    基于Ku波段的车载应急卫星通信系统
    发表于 06-16 10:03 25次下载