0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI技术在理解层和决策层中赋能自动驾驶

ThunderSoft中科创达 来源:未知 作者:胡薇 2018-11-13 16:58 次阅读

1

自动驾驶是一种类人驾驶,即计算机模拟人类的驾驶行为,其功能的实现同样分为感知、理解、决策和执行四个层次,由各类传感器、ECU和执行器来实现。

在整个自动驾驶实现的流程中:

1)感知层主要依赖激光雷达和摄像头等传感器设备所采集的信息感知汽车周围环境,以硬件设备的精确度、可靠性为主要的衡量标准。

2)执行层通过汽车执行器,包括油门、转向和制动(刹车)等,实现车辆决策层输出的加速、转向和制动等决策,主要依靠机械技术实现。

3)AI技术主要应用于理解层和决策层,担任驾驶汽车“大脑”的角色。

2

理解层对感知层数据进行解析,AI 算法技术优势尽现

依据感知层传感器的不同,理解层主要完成两个任务:车辆的高精度定位,以及物体识别和追踪。

高精度定位任务的实现主要是通过GPS或视觉的算法实现非常精准的车辆定位,目前主要的技术路线有三种:惯性传感器(IMU)和GPS定位、基于视觉里程计算法定位、基于雷达的定位。

AI 算法在理解层最主要的应用是物体的识别和追踪。物体跟踪和识别包括静态物体识别和动态物体识别,对于动态物体还需要对其轨迹进行追踪,基于追踪的结果预测其下一步的位臵,计算出安全的行车空间。自动驾驶车辆需要实时进行多个物体的识别和追踪,典型的物体包括车辆、行人、自行车等。

激光雷达和计算机视觉是实现物体识别和跟踪的两种途径,Google和Tesla分别代表了这两种不同的技术路线。

激光雷达生成的点云数据包含物体的3D轮廓信息,同时通过强度扫描成像获取物体的反射率,因此可以轻易分辨出草地、树木、建筑物、路灯、混凝土、车辆等。识别软件算法简单,很容易达到实时性的要求。

计算机视觉的方法是利用深度学习对摄像头图像进行处理,从像素层面的颜色、偏移和距离信息提取物体层面的空间位臵(立体视觉法)和运动轨迹(光流法)。基于视觉的物体识别和跟踪是当前的研究热点,但是总体来说输出一般是有噪音,如物体的识别有可能不稳定,可能有短暂误识别等。

3

决策层如何应对复杂情形是自动驾驶的关键瓶颈

在理解层的基础上,决策层解决的问题是如何控制汽车行为以达到驾驶目标。在一个具有障碍物并且动态变化的环境中,按照一定的评价条件寻找一条从起始状态到目标状态的无碰撞路径。自动驾驶汽车的决策包括全局性导航规划、驾驶行为决策和运动轨迹规划。

1)全局导航规划在已知电子地图、路网以及宏观交通信息等先验信息下,根据某优化目标,选择不同的道路。

2)驾驶行为决策根据当前交通状况、交通法规、结构化道路约束,决定车辆的目标位臵,抽象化为不同的驾驶行为,如变换车道、路口转向等。

3)运动轨迹规划是基于驾驶行为决策,躲避障碍物,对到达目标位臵的路线进行规划。

强化学习在自动驾驶决策层具有应用前景。强化学习的目的是通过和环境交互学习到如何在相应的观测中采取最优行为。行为的好坏可以通过环境给的奖励来确定。不同的环境有不同的观测和奖励。

例如,驾驶中环境观测是摄像头和激光雷达采集到的周围环境的图像和点云,以及其他的传感器的输出。驾驶中的环境的奖励根据任务的不同,可以通过到达终点的速度、舒适度和安全性等指标确定。当前增强学习的算法在自动驾驶汽车决策上的研究还比较初步,有试错次数多、算法可解释性差等弱点。

4

深度学习算法在自动驾驶中广泛应用,端到端自动驾驶仍具挑战

车辆的道路行驶环境非常复杂,需要处理大量非结构化数据。深度学习算法能够高效的处理非结构化数据,并自动地从训练样本中学习特征,当训练样本足够大时,算法能够处理遇到的新的状况以应对复杂决策问题。以基本的车辆识别问题为例,在用足够多的汽车图像对算法进行训练后,算法具备了识别汽车的能力。

深度学习在自动驾驶中的应用可以分为两个学派:端到端式(End to End Architecture)和问题拆解式(Semantic Abstraction)。与人类相比,在端到端式的构架中,一个DNN网络模拟了人的整个驾驶行为;而在问题拆解式的构架中,每个DNN网络仅模拟了人的一部分驾驶行为。

端对端式不需要人工将问题进行拆解,只需要一个深度神经网络(DNN),在经过训练后,基于传感器的输入信息(如照片),直接对车辆的加减速和转向等进行控制。

问题拆解式需要人工将问题进行拆解,分别训练多个DNN网络,实现诸如车辆识别、道路识别、交通信号灯识别等功能。然后基于各个DNN网络的输出,再对车辆的加减速和转向进行控制。

目前,问题拆解式深度学习在自动驾驶领域得到广泛的应用,主要是进行图像识别。如识别行驶途中遇到的车辆、行人、地上的交通标志线、交通信号灯等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31000

    浏览量

    269337
  • 自动驾驶
    +关注

    关注

    784

    文章

    13839

    浏览量

    166556

原文标题:行业 | AI赋能汽车理解决策能力,端到端自动驾驶是终极目标

文章出处:【微信号:THundersoft,微信公众号:ThunderSoft中科创达】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NVIDIA DRIVE技术推动自动驾驶发展

    随着 AI 技术的飞速发展,汽车行业正经历一场深刻而全面的智能化转型。以 NVIDIA DRIVE 技术为核心,NVIDIA 正在推动着自动驾驶技术
    的头像 发表于 12-29 16:02 317次阅读

    浅析基于自动驾驶的4D-bev标注技术

    4D-bev标注技术是指在3D空间中以时间作为第四个维度进行标注的过程。4D-bev通常在地场景较为复杂的自动驾驶场景中使用,其可以通过精准地跟踪和记录动态对象的运动轨迹、姿势变化以及速度等信息,全面理解和分析动态对象在连续的时
    的头像 发表于 12-06 15:01 1030次阅读
    浅析基于<b class='flag-5'>自动驾驶</b>的4D-bev标注<b class='flag-5'>技术</b>

    一文聊聊自动驾驶测试技术的挑战与创新

    随着自动驾驶技术的飞速发展,自动驾驶测试的重要性也日益凸显。自动驾驶测试不仅需要验证车辆的感知、决策、控制模块的独立性能,还需确保系统在复杂
    的头像 发表于 12-03 15:56 206次阅读
    一文聊聊<b class='flag-5'>自动驾驶</b>测试<b class='flag-5'>技术</b>的挑战与创新

    MEMS技术自动驾驶汽车的应用

    MEMS技术自动驾驶汽车的应用主要体现在传感器方面,这些传感器为自动驾驶汽车提供了关键的环境感知和数据采集能力。以下是对MEMS技术
    的头像 发表于 11-20 10:19 405次阅读

    NVIDIA助力初创公司Wayve开发创新自动驾驶技术

    初创公司 Wayve 开发出能够在动态真实环境做出决策自动驾驶技术
    的头像 发表于 10-10 09:39 368次阅读

    聊聊自动驾驶离不开的感知硬件

    自动驾驶飞速发展,绕不开感知、决策和控制决策的经典框架,而感知作为自动驾驶汽车“感官”的重要组成部分,决定了自动驾驶系统对环境的
    的头像 发表于 08-23 10:18 531次阅读

    FPGA在自动驾驶领域有哪些优势?

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)在自动驾驶领域具有显著的优势,这些优势使得FPGA成为自动驾驶技术不可或缺的一部分。以下是FP
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    是FPGA在自动驾驶领域的主要应用: 一、感知算法加速 图像处理:自动驾驶需要通过摄像头获取并识别道路信息和行驶环境,这涉及到大量的图像处理任务。FPGA在处理图像上的运算速度快,可并行性强,且功耗
    发表于 07-29 17:09

    自动驾驶识别技术有哪些

    自动驾驶的识别技术自动驾驶系统的重要组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策
    的头像 发表于 07-23 16:16 687次阅读

    自动驾驶的传感器技术介绍

    自动驾驶的传感器技术自动驾驶系统的核心组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。以下是对
    的头像 发表于 07-23 16:08 2302次阅读

    国科微AI首席科学家邢国良:打造全系边端AI芯片,下一代自动驾驶

    发展机遇,特别是车载平台与基础设施的互联和协同将会大大提升自动驾驶的性能和安全性。当前,国科微全系边端AI芯片正在持续车路协同,助力下一代自动驾
    的头像 发表于 07-09 11:35 550次阅读
    国科微<b class='flag-5'>AI</b>首席科学家邢国良:打造全系边端<b class='flag-5'>AI</b>芯片,<b class='flag-5'>赋</b><b class='flag-5'>能</b>下一代<b class='flag-5'>自动驾驶</b>

    深度学习在自动驾驶的关键技术

    随着人工智能技术的飞速发展,自动驾驶技术作为其中的重要分支,正逐渐走向成熟。在自动驾驶系统,深度学习
    的头像 发表于 07-01 11:40 782次阅读

    智能驾驶域控制器的SoC芯片选型

    智能驾驶产业链由感知决策层、执行组成。感知的车载感知系统主要包括摄像头、超声波雷达、激光雷达、毫米波雷达等;路侧辅助系统主要包括高精
    的头像 发表于 05-11 15:09 1689次阅读
    智能<b class='flag-5'>驾驶</b>域控制器的SoC芯片选型

    未来已来,多传感器融合感知是自动驾驶破局的关键

    /L4级自动驾驶赛跑的元年。 马斯克评论FSD 12.3版本的左转弯操作就像人类司机一样。如果FSD 12.3版本成功,将基本颠覆目前市场上的智能驾驶技术路线。基于“数据/算法/算力”的无人
    发表于 04-11 10:26

    自动驾驶已成现实?赛思时间同步服务器北京市高级别自动驾驶示范区,为自动驾驶提供中国方案

    赛思时间同步服务器全球首个“车路云一体化”高级别自动驾驶示范区,为自动驾驶提供中国方案!北京市高级别自动驾驶示范区的“中枢神经”-云控基
    的头像 发表于 03-22 09:30 1069次阅读
    <b class='flag-5'>自动驾驶</b>已成现实?赛思时间同步服务器<b class='flag-5'>赋</b><b class='flag-5'>能</b>北京市高级别<b class='flag-5'>自动驾驶</b>示范区,为<b class='flag-5'>自动驾驶</b>提供中国方案