0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

创立能减少人工智能偏见但不会降低预测结果准确率的方法的原因

Qp2m_ggservicer 来源:未知 作者:李倩 2018-11-20 16:04 次阅读

在这个人工智能无处不在的时代,这可能会带来持续的系统性歧视。这也是为什么麻省理工电脑科学AI实验室的研究者们创立能减少人工智能偏见但不会降低预测结果准确率的方法的原因。

“我们把这看成是一个帮助人工智能工程师诊断出系统做出不公正预测的原因的工具箱,”麻省理工教授David Sontag说。相关论文由David Sontag,博士生Irene Chen和Fredrik D. Johansson共同完成。

Sontag表示研究者们发现人工智能模型更倾向于将女性识别为低收入,将男性识别为高收入。通过将数据源中的女性代表数量翻了十倍,不准确的结果数量下降了40%。传统方法可能会提出通过将大多数种群的数据源随机化来解决不同种群的结果不平等问题。论文中写道:“在这个项目中,我们认为预测的公正性评估应在数据背景中进行,由不恰当的样本大小或者未测量的预测变量导致的不公正应当通过数据汇集而不是约束模型来解决。”

预测准确率的不同有时可以归咎于缺失数据或者结果无法预测。研究者们建议人工智能在接受公平性标准的检验前,应先分析其模型倾向,模型变化幅度等元素。研究者在论文中指出:“这暴露和区分了不恰当的数据采集所带来的负面影响以及模型在公平性方面的自主选择。提高公平性并不总会带来预测准确率的降低,但肯定需要数据采集方面的投资和模型的发展。在高风险应用中,其产生的收益往往大于前期投入。”

一旦评估已经开始,研究者建议预计收集附加训练样本的影响,然后汇集数据来识别得到不公正结果的亚种群进而引导附加变量集合。这种方法曾被用于从基于统计数字,课本评价和病人死亡率的输入项目中获取平等的结果。

在过去几年里人们对人工智能因偏见产生不准确结果进而带来严重后果的担忧持续增加。一些工具和方法试图解决这一问题,例如今初创公司Pymetrics开源了其偏见探测工具Audit AI,九月IBM发布了基于算法的偏见探测云服务,谷歌也借助What-If工具和TensorBoard将人工智能偏见视觉化。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    6795

    浏览量

    88730
  • 算法
    +关注

    关注

    23

    文章

    4587

    浏览量

    92478
  • 人工智能
    +关注

    关注

    1789

    文章

    46615

    浏览量

    236967

原文标题:GGAI 前沿 | 减少AI偏见 麻省理工通过技术实现中立

文章出处:【微信号:ggservicerobot,微信公众号:高工智能未来】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    微机保护装置预警功能的准确率

    异常状态。 微机保护装置的预警功能准确率是衡量其性能的重要指标,它直接关系到装置能否及时准确地检测潜在的故障或异常情况,从而预防事故的发生。 准确率影响因素: 1.硬件性能:高精度的传感器和强大的数据处理单元直
    的头像 发表于 11-03 16:10 98次阅读

    ai人工智能回答准确率高吗

    人工智能(AI)回答的准确率是一个相对的概念,会受到多个因素的影响,因此不能一概而论地说其准确率高或低。以下是对AI回答准确率及其影响因素的分析: 一、AI回答
    的头像 发表于 10-17 16:30 1135次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    了电力的实时平衡和优化,有效降低了电网的运行成本和故障。 此外,书中还讨论了人工智能在能源科学研究中的挑战和机遇。这些挑战包括数据质量、算法优化、隐私保护等方面,而机遇则体现在技术创新、产业升级
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    研究的进程。从蛋白质结构预测到基因测序与编辑,再到药物研发,人工智能技术在生命科学的各个层面都发挥着重要作用。特别是像AlphaFold这样的工具,成功解决了困扰生物学界半个多世纪的蛋白质折叠问题,将
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    非常高兴本周末收到一本新书,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 关于《AI for Science:人工智能驱动科学创新》第二章“AI
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不仅极大地提高了数据处理
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    和使用该技术,无需支付专利费或使用费。这大大降低人工智能图像处理技术的研发成本,并吸引了大量的开发者、企业和研究机构参与其生态建设。 灵活性则体现在RISC-V可以根据不同的应用场景进行定制和优化,从而
    发表于 09-28 11:00

    NIUSB6009 采集准确率的问题?

    NIUSB6009 采集准确率的问题? 一、本人做一个中间继电器电性能实验的装置 1、PLC带动中间继电器吸合和释放,(吸合用时1.5秒,释放用时1.5秒)周而复始的运动。 2、中间继电器的触头负载
    发表于 09-23 15:59

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    大力发展AI for Science的原因。 第2章从科学研究底层的理论模式与主要困境,以及人工智能三要素(数据、算法、算力)出发,对AI for Science的技术支撑进行解读。 第3章介绍了在
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    自动雨量监测系统(准确预测降雨情况,提高预报的准确率

    对工程的影响,及时采取相应的措施,保障工程的安全运行。在气象预报方面,它可以帮助气象工作者更准确预测降雨情况,提高预报的准确率
    的头像 发表于 03-28 14:59 453次阅读

    谷歌AI预测洪灾准确率提高,最多提前7天

    3 月 22 日,据报道,Google 近期荣获《Nature》认可,发表其借助人工智能技术精准预测洪灾的研究进展。此举或将破解长期困扰全球 80 余国地区居民的洪水预警难题。
    的头像 发表于 03-22 15:00 465次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17