1.图像和物体识别
机器在图像和物体识别方面有很好的记录。GeoffHinton发明的胶囊网络几乎减少了以前的最佳错误率,这个测试挑战软件识别玩具。即使视图与之前分析的视图不同,在各种扫描中使用增加量的这些胶囊也允许系统更好地识别物体。
另一个例子来自一个最先进的网络,该网络经过标记图像数据库的训练,能够比相同任务训练100小时的博士更好地分类对象。
2.电子游戏
Google的DeepMind使用深度学习技术,被称为深度强化学习。研究人员用这种方法教计算机玩Atari游戏Breakout。电脑没有以任何特定的方式教授或编程玩游戏。相反,它在观看比分时被赋予了键盘的控制权,其目标是最大化得分。玩了两个小时后,电脑成了游戏的专家。
深度学习社区正在进行一场比赛,训练计算机在几乎所有你能想到的游戏中击败人类,包括太空侵略者,毁灭战士,乒乓球和魔兽世界。在大多数这些游戏中,深度学习网络已经胜过有经验的玩家。电脑没有编程玩游戏;他们只是通过玩耍学习。
3.语音生成和识别
Google发布了WaveNet,百度发布了DeepSpeech。两者都是自动生成语音的深度学习网络。系统学会自己模仿人类的声音,并随着时间的推移而改善。将他们的言论与真实的人物区别开来,这要比想像中难得多。
由牛津大学和GoogleDeepMind科学家LipNet创建的一个深度网络,在阅读人们的嘴唇方面达到了93%的成功,普通的人类嘴唇阅读器只有52%的成功率。华盛顿大学的一个小组使用唇形同步来创建一个系统,将合成音频设置为现有视频。
4.艺术和风格的模仿
神经网络可以研究特定艺术品的笔画,颜色和阴影中的图案。在此基础上,可以将原作的风格转化为新的形象。
DeepArt.io就是一个例子,该公司创建的应用程序使用深度学习来学习数百种不同的风格,可以将其应用于照片。艺术家和程序员GeneKogan还根据从埃及象形文字中学到的算法样式,应用风格转换来修改蒙娜丽莎。
5.预测
斯坦福大学研究人员蒂姆尼特·格布鲁拿走了五千万张谷歌街景图片,探索一个深度学习网络可以做些什么。计算机学会了本地化和识别汽车。它检测到超过2200万辆汽车,包括他们的制造商,型号,车型和年份。这个系统应用的一个例子包括了选民路线开始和停止的迹象。根据分析,“如果在15分钟车程内遇到的轿车数量超过皮卡车数量,那么在下次总统选举期间,这个城市很可能会投票给民主党人(88%的概率)。
来自GoogleSunroof的机器的另一个例子比人类提供更准确的预测。该技术使用来自GoogleEarth的航空照片创建屋顶的3D模型,将其与周围的树木和阴影区分开来。然后使用太阳的轨迹来预测太阳能电池板根据位置规格可以从屋顶产生多少能量。
-
神经网络
+关注
关注
42文章
4764浏览量
100544
发布评论请先 登录
相关推荐
评论