0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用深度学习来帮助眼科医生和验光师进一步检测眼部图像的新方法

nlfO_thejiangme 来源:未知 作者:李倩 2018-11-24 10:53 次阅读

青光眼是世界上导致失明的第二大原因。仅在美国,这一病症就影响了约270万人。它是一种复杂的疾病,如果不及时治疗可能导致失明。这在澳大利亚也是个特别严重的问题,其中只有50%的人被确诊为青光眼并接受相应的治疗。

目前,IBM和纽约大学科学家团队正在研究,可以利用深度学习来帮助眼科医生和验光师进一步检测眼部图像的新方法,这一方法也可有助于加快在图像中检测青光眼的过程。

在最近的一篇论文中,研究人员详细介绍了一种新的深度学习框架,该框架直接从原始光学相干断层扫描(OCT)成像中检测青光眼,这种方法利用的是光波拍摄视网膜的横截面图像。该方法达到了94%的准确率,且无需对数据进行任何额外的分割或清理——通常在传统的方法中这一步骤通常非常耗时。

青光眼(顶行)和健康眼(底行)中网络检测区域的可视化

现在,人们使用各种测试方法来诊断青光眼,例如眼压测量和视野测试、眼底和OCT成像。但OCT提供了一种有效的方法来可视化和量化眼睛中的结构,即视网膜神经纤维层(RNFL),它随着疾病的进展而变化。

虽然这种方法效果良好,但它需要额外的过程来量化OCT图像中的视网膜神经纤维层。这些技术通常需要配合各种方式来对输入数据进行处理,例如将所有眼睛图片翻转到相同的方向(左或右)以减少数据的可变性,从而改善分类器的性能。而研究人员新提出的方法消除了这些额外的步骤,保留了检测中最重要的部分。

在624名受试者(217名健康受试者和432名青光眼患者)中,研究人员建立了利用深度学习进行检测的新方法,准确地检测出了94%的青光眼患者,而之前提到的技术仅发现了86%的患者。研究人员表示准确性的提升是由于对图像中结构自动分割错误的消除,以及新方法包含了目前临床上尚未使用的眼底特征进行了分类。

此外,与目前使用更大更深层网络人工智能研究趋势相反,研究人员使用的网络是一个小型的5层网络,这主要是由于医疗数据由于其隐私性不易获取。这种数据稀缺使得大型网络的使用在许多医疗应用中不切实际。即使在研究中有时也会看到“越少越佳”的特点,此外,在较小的网络上训练这些算法可以让它们更高效地运行。

数据被输入如下图所示的卷积神经网络(CNN)。网络由5个3D卷积层组成,并使用ReLU激活和批量归一化,滤波器组大小为32-32-32-32-32,滤波器尺寸为7-5-3-3-3,步幅为2-1-1-1-1。在最后的卷积层之后采用全局平均合并,并利用全连接的softmax输出层以实现类标签的预测和类激活图(CAM)的计算。网络架构的一个重要方面是选择3D卷积以允许计算3D类激活图。卷积神经网络的5个输入层沿第一维度(例如,颜色通道)聚合输入数据。在2D卷积的情况下,所得到的类激活图将是2D的,且深度信息丢失。因此通过采用3D卷积,这使我们能够识别光学相干断层扫描体积内对疾病分类很重要的区域。

通过随机超参数探索优化了网络体系结构的各个方面,例如层数、每层滤波器组数、滤波器大小、步幅和批量归一化的使用;类似于为基于特征的方法执行的超参数优化。网络实现的曲线下面积用于选择最佳网络。研究人员从网络架构搜索中排除了最大池化,因为它可以被stride卷积取代。

卷积神经网络在Keras中实现,Tensorflow作为后端。使用nut-flow/ml进行数据分离、分层和预处理。通过降采样,每个阶段对数据进行分层。通过随机遮挡、平移、左右眼翻转、沿着表面轴的小旋转(±10度)和混合来增强训练数据。同时研究人员还在没有任何扩充的情况下训练了网络,并报告了相应的曲线下面积。在训练期间具有最高准确度的曲线下面积的网络被保存。

这只是IBM目前研究应用人工智能的一个方面。在最近宣布的新合作中,IBM Research和George&Matilda (G&M) 将利用G&M强大的匿名临床数据和成像研究数据集,来探索使用深度学习模型和成像分析的方法,以支持临床医生在图像中识别和检测眼部疾病——包括青光眼。研究人员还将研究青光眼的潜在生物标志物,这有助于更好地了解疾病进展。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IBM
    IBM
    +关注

    关注

    3

    文章

    1749

    浏览量

    74616
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100520
  • 深度学习
    +关注

    关注

    73

    文章

    5491

    浏览量

    120958

原文标题:治愈系 | 深度学习 & 青光眼

文章出处:【微信号:thejiangmen,微信公众号:将门创投】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    英特尔将进一步分离芯片制造和设计业务

    面对公司成立50年最为严峻的挑战,英特尔宣布了项重大战略调整,旨在通过进一步分离芯片制造与设计业务,重塑竞争力。这决策标志着英特尔在应对行业变革中的坚定步伐。
    的头像 发表于 09-19 16:48 254次阅读

    通过展频进一步优化EMI

    电子发烧友网站提供《通过展频进一步优化EMI.pdf》资料免费下载
    发表于 09-04 09:32 1次下载
    通过展频<b class='flag-5'>进一步</b>优化EMI

    种无透镜成像的新方法

    透镜成像形式,它使用扫描光束收集散射光进行图像重建,面临着周期性样品的挑战。为了研究微电子或光子元件中的纳米级图案,种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜。这在波长短于紫外线时尤为重要,其成像空间分辨率高于
    的头像 发表于 07-19 06:20 314次阅读
    <b class='flag-5'>一</b>种无透镜成像的<b class='flag-5'>新方法</b>

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测直是研究的热点和难点之。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得
    的头像 发表于 07-04 17:25 733次阅读

    Melexis推出全新MLX81123芯片,进一步扩展LIN RGB系列产品线

    Melexis近日宣布,作为汽车动态照明LED驱动芯片领域的领军者,正式推出全新产品MLX81123,进一步扩展LIN RGB系列产品线。这款芯片在前代产品的基础上进行深度优化,封装设计更为紧凑
    的头像 发表于 06-14 14:41 680次阅读

    咳嗽检测深度神经网络算法

    的胸部以完成任务。由于该方法被普遍采用,因为实时咳嗽事件将为进一步分析提供更好的结果,因此它根据声音质量和咳痰密度将声音分为干咳、百日咳和湿咳。我们提出的模型包括预处理、使用MFCC[12]的特征提取
    发表于 05-15 19:05

    利用光电容积描记(PPG)信号和深度学习模型对高血压分类的新方法

    [22]。就像平均池化样,最大池化是另种用于减小特征图大小的常用方法。它通过仅取每个区域的最大值获得最重要的特征。在机器学习中,池化
    发表于 05-11 20:01

    轧机牌坊滑板压亏修复的新方法

    电子发烧友网站提供《轧机牌坊滑板压亏修复的新方法.docx》资料免费下载
    发表于 03-14 16:16 0次下载

    材料价格进一步下降,盈利触底 锂电材料企业如何应对?

    在上游原料价格相对稳定、终端销量有所好转的情况下,季度四大锂电主材价格却出现进一步下跌。
    的头像 发表于 03-01 10:25 951次阅读

    有什么方法可以进一步提高AD7714的分辨率啊?

    级放大再加给AD7714时,测得人分辨率还要低些。由于是用干电池得到AD7714的输入信号,该信号相对来说很稳定,而且板上的噪声也不是太大。请问各位大虾,还有什么方法可以进一步提高AD7714的分辨率啊?不胜感激!
    发表于 12-25 06:33

    种产生激光脉冲新方法

    中提取粒子并研究物质的性质。为了实现这目标,三个小组共同制作了种非常特殊的镜子——这种镜子不仅能反射光脉冲,还能及时将光脉冲压缩两百倍以上,并有可能进一步压缩。 斯特拉斯克莱德大学、UNIST和GIST的研究小组提出
    的头像 发表于 12-07 06:32 466次阅读
    <b class='flag-5'>一</b>种产生激光脉冲<b class='flag-5'>新方法</b>

    IC封装中快速创建结构的新方法

    IC封装中快速创建结构的新方法
    的头像 发表于 12-06 16:34 555次阅读
    IC封装中快速创建结构的<b class='flag-5'>新方法</b>

    基于transformer和自监督学习的路面异常检测方法分享

    铺设异常检测可以帮助减少数据存储、传输、标记和处理的压力。本论文描述了种基于Transformer和自监督学习新方法,有助于定位异常区域
    的头像 发表于 12-06 14:57 1451次阅读
    基于transformer和自监督<b class='flag-5'>学习</b>的路面异常<b class='flag-5'>检测</b><b class='flag-5'>方法</b>分享

    借助人工智能,存储器比重将进一步增加

    SK海力士预测在人工智能(AI)领域,存储器解决方案的比重将进一步增加,可以通过类似AiMX的解决方案部分替代图形处理单元(GPU)。
    发表于 12-04 09:52 412次阅读
    借助人工智能,存储器比重将<b class='flag-5'>进一步</b>增加

    ad9106如何将波形频率设置为进一步降低到10Hz?

    你好,我有个小问题。我使用100m时钟芯片。每个时钟只有10ns,ad9106寄存器的最小输出波形只有100Hz。如何将波形频率设置为进一步降低到10Hz?我已将配置设置为相关寄存器的最大值。拍
    发表于 12-01 06:12