0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探讨人工智能80年斗争史

jmiy_worldofai 来源:未知 2018-11-28 14:54 次阅读

有人的地方,就有斗争。

华山派有“剑宗”和“气宗”,相互斗了几十年。人工智能界也有“山头”,AI两大派系的斗争早在第一台电子计算机问世前就已经开始了。

△有三名法国人把两派的势力对决画成图,名字叫“神经元的复仇”

这两大派系就是:

在符号主义者的眼里,人工智能应该模仿人类的逻辑方式获取知识,而连接主义者奉行大数据和训练学习知识。

派系斗争与两次AI危机

早在达特茅斯会议之前,图灵就提出过“图灵机”这样的人工智能前沿概念。斗争之初的几十年间,连接主义派的论文引用率一直领先对手。

别看奉行“连接主义”的机器学习如何风光,早年间他们长期受到另一个派别——“符号主义”者的鄙视。

60年代初,美国国防高级研究计划署(DARPA)对AI领域进行了数百万美元的投资,人工智能也迎来的第一黄金发展期。

第一次AI危机

情况在1969年起了变化,“符号主义”代表人物马文·明斯基(Marvin Minsky)写了一本名为《感知器》(Perceptron)的书,结果直接把神经网络给写死了。

感知器是那个年代的神经网络。明斯基在书中向“连接主义”发难,你们的感知器连最基本的异或(XOR)都做不到,做出来还有什么用?

也是在那一年,闵斯基获得了图灵奖。

“符号主义”派胜利后不久,AI就迎来了第一次寒冬。或者说,计算力的匮乏导致了第一次AI寒冬,帮助“符号主义”实现逆袭。

符号主义的高峰

到了70年代中期,专家系统(expert system)的出现带来了AI的黄金时代。它其实就是一套计算机软件,能够模拟人类专家回答问题,不过它的智能仅局限在一个很窄的领域,说它是“活字典”可能更准确。

与此同时,“连接主义”也在悄悄发展,约翰·霍普菲尔德(John Hopfield)在1982年发现了具有学习能力的神经网络算法

就在“符号主义”志得意满的时候,Lisp machine的失败让两派力量再次发生了逆转。Lisp是当时研究AI领域常用的编程语言,Lisp machine是专门被优化用来运行Lisp程序的计算机。

80年代,研究AI的学校都买入了这种机器,最后却发现用它们做不出来AI。之后就出现了IBM PC和苹果机,比Lisp machine便宜,运算力更强。

Lisp machine顺理成章“狗带”,AI进入第二次寒冬。

连接主义的逆袭

“连接主义”者在这时候也找到了更简单的统计方法:支持向量机(SVM),它消耗的计算资源更少。之后,长短期记忆(LSTM)算法也被提出。

后来的事情,你们也知道了,深度学习终于又重新霸占了学术和工业界。时间再回到当下,从2010年开始,机器学习成为AI行业主导。人工智能在机器学习的帮助下,取得了巨大的成就,标志着AI的彻底复苏。如今最热的AI概念均出自“连接主义”派。

近年来,计算机硬件的发展更是让“连接主义”如鱼得水,连手机的计算力都能完成识图的任务,深度学习能实现“反杀”也就不奇怪了。

双方代表人物

说到两派的斗争,就不得不提一下双方的“将领”了:

符号主义派:马文·明斯基(Marvin Minsky),麻省理工人工智能实验室创始人之一,他奠定了人工神经网络的研究基础,早在1951年,他设计构建了第一个能自我学习的人工神经网络机器。

连接主义派:约翰·霍普菲尔德(John Hopfield),美国科学家,在物理学和计算机学方面均有很高的成就,1982年发明了联想神经网络,也就是知名的霍普菲尔德网络。

△两派之间也相互引用文章

除了这两位名人外,符号主义这边的大牛还有Herbert A. Simon、Allen Newell。如今连接主义当道,这一派的大佬更为我们所熟知:比如Yann LeCun、李飞飞、Geoffrey Hinton等人。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46737

    浏览量

    237301
  • 电子计算机
    +关注

    关注

    0

    文章

    16

    浏览量

    8143

原文标题:“神经网络”的逆袭:图解80年AI斗争史

文章出处:【微信号:worldofai,微信公众号:worldofai】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能的发展历程可以追溯到上世纪50代,经
    发表于 11-14 16:39

    万集科技受邀参加北汽人工智能科技日活动

    近日,万集科技受邀参加了由北汽新能源举办的人工智能科技日活动。此次活动汇聚了众多人工智能领域的领先企业及科研机构,共同探讨人工智能技术如何推动智能网联汽车产业的升级与发展。
    的头像 发表于 11-13 16:41 358次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对人工智能
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    周末收到一本新书,非常高兴,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 《AI for Science:人工智能驱动科学创新》这本书的第一章,作为整个著作的开篇
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    人工智能推荐系统中强大的图形处理器(GPU)一高下。其独特的设计使得该处理器在功耗受限的条件下仍能实现高性能的图像处理任务。 Ceremorphic公司 :该公司开发的分层学习处理器结合了
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    、污染治理、碳减排三个方面介绍了人工智能为环境科学引入的新价值和新机遇。 第8章探讨了AI for Science在快速发展过程中面临的机遇和挑战,并对“平台科研”模式进行了展望。 申请时间
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    人工智能技术在集成电路中的应用

    随着科技的飞速发展,人工智能(AI)与集成电路技术已成为推动现代电子工业进步的重要力量。两者相辅相成,共同推动着电子产品的智能化、高效化和可靠化。本文将从多个角度详细探讨人工智能技术在集成电路中的应用,涵盖其设计、优化、功能实现
    的头像 发表于 07-15 09:43 1963次阅读

    中国电信亮相2024世界人工智能大会

    在2024世界人工智能大会暨人工智能全球治理高级别会议(WAIC2024)的璀璨舞台上,上海以其独特的魅力与前沿的科技氛围,再次成为全球目光的焦点。本次大会以“以共商促共享·以善治促善智”为主题,汇聚了全球
    的头像 发表于 07-08 15:59 616次阅读

    人工智能与机器人的区别

    在当今科技飞速发展的时代,人工智能(AI)和机器人已成为社会关注的热点话题。尽管两者在多个领域有着广泛的应用和交集,但它们本质上是两个不同的概念。本文将从定义、技术方向、功能、应用范围、研究重点及未来发展等方面,详细探讨人工智能与机器人之间的区别,力求全面、深入地解析这一
    的头像 发表于 07-04 17:41 2116次阅读

    人工智能与大模型的关系与区别

    在科技日新月异的今天,人工智能(AI)已成为推动社会进步的重要力量。而在人工智能的众多分支中,大模型(Large Models)作为近年来兴起的概念,以其巨大的参数数量和强大的计算能力,在多个领域展现出了非凡的潜力。本文旨在深入探讨人工
    的头像 发表于 07-04 16:07 3252次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    人工智能在工业领域的作用

    本文是系列的第一部分,我们将探讨人工智能在工业领域的作用。
    的头像 发表于 12-21 11:07 823次阅读

    人工智能领域多模态的概念和应用场景

    随着人工智能技术的不断发展,多模态成为了一个备受关注的研究方向。多模态技术旨在将不同类型的数据和信息进行融合,以实现更加准确、高效的人工智能应用。本文将详细介绍多模态的概念、研究内容和应用场景,并探讨人工智能领域多模态的未来发展
    的头像 发表于 12-15 14:28 8933次阅读

    探讨人工智能时代的性能便携性问题

     在这个人工智能(AI)和机器学习(ML)成为媒体焦点的时代,高性能计算(HPC)在几个层面上往往是一个无名英雄。它是医疗保健和气候研究等领域革命性突破性研究背后的驱动力,也是尖端技术和计算技术的重要试验场。
    发表于 11-23 10:00 210次阅读