0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Google的算法原理,Google是怎样训练神经网络的?

jmiy_worldofai 来源:lq 2018-12-03 16:59 次阅读

虽然双摄手机已经在市场上普及,其所带来的人像模式、多倍变焦也成为了不少智能手机的「标配」,但仍然有厂商依然坚持用一个摄像头的配置。

比如以软件著称的 Google,从 Pixel 手机的初代到今天的 Pixel 3 / 3XL,在往今的两年时间里(初代 Pixel 于 2016 年发布),他们仍坚持采用单摄配置。

有意思的是,Pixel 不但是 DxOMark 榜单前列的常客,夜景表现长期吊打各旗舰, 而且还带来了比双摄出品更优秀的人像模式出品。

这些其实都是要归功于软件算法AI 神经网络。昨天,Google 就在他们的 Google AI Blog 上解析了 Pixel 3「人像模式」(Portrait Mode)的算法原理。实际上,他们在这套算法上下了不少功夫。

Google 的算法原理

如果你对 Google 的相机算法陌生,不妨先来了解一下 Pixel 2 的人像算法原理。

去年,Google 通过 AI(神经网络)算法,让 Pixel 2 / 2XL 在仅一颗摄像头的硬件条件下,拍出能与双摄手机媲美的人像背景虚化照片。

▲ 图片来自:Google

通过去年 Google公布的这组对比图,我们能快速区分出左边的 HDR+ 样张和右边 Portrait Mode「人像模式」下的样张在背景虚化上的不同。

正如你所见那样,在「人像模式」下,人像后的背景被进行了软件虚化处理,与正常 HDR+ 对比看上去视觉冲击更强,同时也避免了背景对拍摄主体的视觉干扰。

拍摄一张 HDR+ 照片

根据 Google 去年在 AI Blog 的介绍,Pixel 2 的相机会先拍摄一组 HDR+ 照片,通过多帧合成,从而提升最终成片的动态范围、细节保留、高光表现。

通过下面这组 HDR+ 的对比图,我们能看到该功能在开启前后的区别(注意右上角远景曝光及地板线条细节)。

▲ 左:HDR+ 前;右:HDR+ 后 图片来自:Google

分割远近景

如果你想拍摄一张「人像模式」照片,那么在得到一张 HDR+ 成片后,相机会使用 TensorFlow 的 AI 神经网络将人物像素点、物体的像素点、远近物的像素点筛选出来。

Google 在 AI Blog 给出的这组对比图能看到更直观的展示效果:

左边是 HDR+ 拍摄的原图,右边黑色部分是 AI 识别出来的背景部分,白色部分是被识别出来的主体人物轮廓(包括人物五官细节以及在该轮廓内的物体)。

有意思的是,从最终成片中我们能看到,桌上的饼干在 AI 识别下是属于「非人」部分,但最终这部分没有被虚化。这是因为系统除了将主体和背景识别出来以外,还识别出了主体周边的物体,因此 AI 最终没有将人物下方的物体虚化。因为这部分虽然不属于对焦主体,属于近景,但是这种效果还不是最完美的。

得到深度优化图并合成最终成片

虽然去年的 Pixel 2 和今年的 Pixel 3 系列都没有配置双摄像头,但 Google 似乎一直都不是以硬件取胜的公司,他们更擅长于用软件和算法去解决问题。

▲ 图片来自:Google

尽管没有硬件上的双摄,但 Pixel 的相机都配备了 PDAF 双核相位对焦技术,Google 便可以通过像素点划分将一颗摄像头「一分为二」:

镜头左侧拍摄到的画面会和右侧的画面约有 1mm 的不同视觉间距,如果是在纵向拍摄下,镜头则是分为上下两部分排列。

在拍摄后,系统会并排两侧镜头拍摄到的像素。通过 Google 自家的 Jump Assembler 算法去得出立体演算的深度优化图,利用双向求解器将深度图转变成高解析度。

▲ 图 1 、2 为上半部分、下半部分相机拍摄,图 3 动图为前面两图区别 图片来自:Google

上图左边是通过 PDAF 拍摄并演算得到的深度图,白色部分越深,代表与镜头距离越近;右边是决定像素模糊程度,黑色部分为「不需模糊」范围,红色部分为「需模糊范围」,通过红色的深浅,系统会自动判断出背景虚化的力度。

▲ 最终效果图

最后系统会将第 2 步骤分割出的背景图和第 3 步骤得出的深度图合并。在 AI 物体的判别下,系统能估算出近景的饼干和瓷盘到对焦(人物)主体的距离,并进行虚化。最终得到了比步骤 2 的初级处理更全面和自然的人像照片。

对比步骤 2 和步骤 3 最终的效果图,你能看到位于近景的饼干也被适当虚化了。通过软件算法,我们能将虚化范围「捏造」成任何形状。

Google 是怎样训练神经网络的?

了解了 Pixel 2 的人像模式原理,那么 Pixel 3 的优化就不难理解了。

通过软件算法,相机系统可大致估算出对焦主体和背景的距离,并对远景进行虚化。但在手持拍摄时,手机难免会出现轻微的抖动,因而影响到最终虚化效果。正是如此,此前有不少用户在 Pixel 2 系列上遇到了景深识别错误的问题。

据 Google AI Blog 的介绍,基于神经网络学习的特性,在 Pixel 3 上,Google 正通过增加对 AI 系统的识别提示和训练 AI 神经网络的算法,去修复「人像模式」中的识别误差问题。

例如,通过像素点数量去判断物体与镜头的远近距离,得出给 AI 更精准的距离判断结果;或者通过对焦点内外的清晰情况,给 AI 提供散焦提示。

Franken Phone」是 Google 用于训练由 TensorFlow 编写的神经网络系统的装置,这套装置由 5 台 Pixel 3 和 WiFi 组成。

在测试时,Google 会用 Franken Phone 里的 5 台手机在不同的角度同时拍摄,最终得出一张由多个角度、和立体算法合成的动态深度图。从而达到模拟拍摄动态、在复杂场景下训练神经网络精准识别出人物(近景)和背景(远景)的目的。

▲ 图一为 Google Franken Phone。图片来自:Google

当然,如果您对 Google 这套算法感兴趣,也可以自己动手去亲自研究他们。Google AI Blog表示,在使用 Google Camera App 6.1 版本的「人像模式」拍摄后,通过 Google Photos 能查看照片的深度图了。

或者,您也可以通过第三方软件提取深度图,去看看在 AI 神经网络优化下识别方式。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 智能手机
    +关注

    关注

    66

    文章

    18500

    浏览量

    180421
  • Google
    +关注

    关注

    5

    文章

    1766

    浏览量

    57602
  • 神经网络
    +关注

    关注

    42

    文章

    4773

    浏览量

    100878

原文标题:通过 AI 自学习,Google 让 Pixel 3 的人像模式更优秀

文章出处:【微信号:worldofai,微信公众号:worldofai】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    脉冲神经网络怎么训练

    脉冲神经网络(SNN, Spiking Neural Network)的训练是一个复杂但充满挑战的过程,它模拟了生物神经元通过脉冲(或称为尖峰)进行信息传递的方式。以下是对脉冲神经网络
    的头像 发表于 07-12 10:13 646次阅读

    怎么对神经网络重新训练

    重新训练神经网络是一个复杂的过程,涉及到多个步骤和考虑因素。 引言 神经网络是一种强大的机器学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。然而,随着时间的推移,数据分布可能会
    的头像 发表于 07-11 10:25 474次阅读

    BP神经网络的基本结构和训练过程

    网络结构,通过误差反向传播算法(Error Backpropagation Algorithm)来训练网络,实现对复杂问题的学习和解决。以下将详细阐述BP
    的头像 发表于 07-10 15:07 4709次阅读
    BP<b class='flag-5'>神经网络</b>的基本结构和<b class='flag-5'>训练</b>过程

    神经网络如何用无监督算法训练

    标记数据的处理尤为有效,能够充分利用互联网上的海量数据资源。以下将详细探讨神经网络如何用无监督算法进行训练,包括常见的无监督学习算法训练
    的头像 发表于 07-09 18:06 834次阅读

    如何利用Matlab进行神经网络训练

    Matlab作为一款强大的数学计算软件,广泛应用于科学计算、数据分析、算法开发等领域。其中,Matlab的神经网络工具箱(Neural Network Toolbox)为用户提供了丰富的函数和工具
    的头像 发表于 07-08 18:26 1925次阅读

    bp神经网络算法的基本流程包括哪些

    BP神经网络算法,即反向传播神经网络算法,是一种常用的多层前馈神经网络训练
    的头像 发表于 07-04 09:47 676次阅读

    bp神经网络算法过程包括

    算法过程,包括网络结构、激活函数、训练过程、反向传播算法、权重更新策略等。 网络结构 BP神经网络
    的头像 发表于 07-04 09:45 489次阅读

    神经网络反向传播算法的优缺点有哪些

    神经网络反向传播算法(Backpropagation Algorithm)是一种广泛应用于深度学习和机器学习领域的优化算法,用于训练多层前馈神经网络
    的头像 发表于 07-03 11:24 1070次阅读

    神经网络反向传播算法的原理、数学推导及实现步骤

    神经网络反向传播算法(Backpropagation Algorithm)是一种用于训练多层神经网络算法,其基本原理是通过梯度下降法来最小
    的头像 发表于 07-03 11:16 817次阅读

    bp神经网络和卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,并通
    的头像 发表于 07-03 10:12 1240次阅读

    BP神经网络算法的基本流程包括

    BP神经网络算法,即反向传播(Backpropagation)神经网络算法,是一种多层前馈神经网络,通过反向传播误差来
    的头像 发表于 07-03 09:52 528次阅读

    神经网络算法的优缺点有哪些

    的优点 自学习能力:神经网络算法具有强大的自学习能力,能够从大量数据中自动提取特征,无需人工干预。这使得神经网络算法在处理复杂问题时具有很高的灵活性和适应性。 泛化能力强:
    的头像 发表于 07-03 09:47 1465次阅读

    卷积神经网络训练的是什么

    训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积神经网络是一种前馈深度学习模型,其核心思想是利用卷积操作提取输入数据的局部特征,并通过多层结构进
    的头像 发表于 07-03 09:15 433次阅读

    神经网络反向传播算法原理是什么

    神经网络反向传播算法(Backpropagation Algorithm)是一种用于训练多层前馈神经网络的监督学习算法。它通过最小化损失函数
    的头像 发表于 07-02 14:16 675次阅读

    如何训练和优化神经网络

    神经网络是人工智能领域的重要分支,广泛应用于图像识别、自然语言处理、语音识别等多个领域。然而,要使神经网络在实际应用中取得良好效果,必须进行有效的训练和优化。本文将从神经网络
    的头像 发表于 07-01 14:14 487次阅读