0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

摩尔定律延续的希望来了!打开“超级芯片”大门,现有晶体管或被新材料取代

DPVg_AI_era 来源:lq 2018-12-06 09:31 次阅读

Nature重磅文章,英特尔和加州大学伯克利分校的研究人员正在研究超级芯片,新的材料有望取代目前的晶体管,将芯片元件尺寸缩小五分之一,功耗降低90%,为摩尔定律再续一命。

摩尔定律延续的希望来了!

Nature发布的最新论文显示,英特尔和加州大学伯克利分校的研究人员正在研究超级芯片,已经在“自旋电子学”领域取得突破进展。

目前,摩尔定律为“半导体芯片中可容纳的元器件数目,约18个月增加一倍”,其中的“元器件”主要为CMOS晶体管,目前主流看法是在5nm节点后晶体管将逼近物理极限,导致摩尔定律终结。

研究人员用“自旋电子学”技术可以让现在常见的芯片元件尺寸缩小到五分之一,并降低能耗超过90%,一旦商业成功,有望研发出“超级芯片”,为摩尔定律“续命”。

打开“超级芯片”大门,现有晶体管或被新材料取代

70年前发明的晶体管技术,现在已经广泛应用在从手机、电器、汽车和超级计算机等各个领域。晶体管在半导体内部周围移动电子并将它们存储为二进制信息0和1。

自20世纪80年代初以来,大多数电子产品都依赖于CMOS晶体管的使用。然而,CMOS操作的原理涉及由绝缘栅极控制的可开关半导体电导率,这在很大程度上是不变的,即使晶体管能被缩小到10纳米的尺寸。

Nature发表的英特尔和加州大学伯克利分校的研究:超出CMOS的可伸缩逻辑技术,能够提高冯•诺伊曼架构的效率和性能,并在人工智能等新兴计算领域实现增长。

具体而言,研究人员提出一种可伸缩的自旋电子逻辑器件“MESO器件”,它通过自旋轨道转导和磁电开关来工作。该装置采用先进的量子材料,特别是相关氧化物和物质拓扑状态,进行集体开关和检测

MESO基于由铋、铁和氧(BiFeO 3)组成的多铁材料组成,既有磁性又有铁电性。这种材料的关键性优势在于这两种状态是相互联系或耦合的,因此改变一种状态会影响另一种状态。通过控制电场的变化与翻转,就可以改变磁场状态,这对MESO的诞生至关重要。

基于磁电和自旋轨道材料,MESO由原来CMOS中的二进制数表示方式变成了多铁材料的磁自旋的高、低态。

图1:MESO逻辑转导和设备操作

铋铁氧化物多铁材料的单晶体结构。铋原子(蓝色)在立方体的每个面上与氧原子(黄色)形成立方晶格,铁原子(灰色)位于中心。稍微偏离中心的铁与氧相互作用形成电偶极子(P),与原子(M)的磁自旋耦合。电场(E)的翻转也会造成磁矩翻转。该材料中原子的共同磁自旋对二进制信息0和1进行编码,并实现信息存储和逻辑运算。

与CMOS技术相比,MESO具有更优越的转换能量(10到30倍),更低的开关电压(5倍)和增强的逻辑密度(5倍)。此外,它的非易失性可实现超低待机功耗,这对现代计算至关重要。这表明,自旋电子逻辑技术可以实现多代计算的发展。

MESO的逻辑运算速度比CMOS高五倍,延续了摩尔定律中对单位面积计算的进步趋势。

在“自旋电子学”技术下,MESO有望在未来取代目前广泛使用的CMOS晶体管,“超级芯片”将诞生,可以说,MESO有望为摩尔定律“再续一波”。

未来十年或将应用,来自中国半导体的压力也是研发动力

MESO器件的材料最初由加州大学伯克利分校材料科学与工程和物理学教授Ramamoorthy Ramesh于2001年发现,他同时也是这篇论文的资深作者之一。

Ramamoorthy Ramesh认为,未来,全球计算市场有两大趋势迫切需要更节能的计算机。一个是物联网,一个是AI

物联网意味着每个建筑物、每辆汽车都将完全配备微电子,万物互联。虽然这个市场的确切规模正在争论中,但人们一致认为它正在迅速发展。

人工智能/机器学习虽然处于初期阶段,但未来将在各种技术领域中得到应用。然而,这些应用目前受到存储器的限制以及计算效率的限制。因此,我们需要更强大的芯片,消耗更低的能量。在这些新兴应用的推动下,微电子市场有可能呈指数级增长。

Ramamoorthy Ramesh还提到,国际上的竞争也是研发下一代半导体技术的动力。目前,中国已投入数千亿美元用于建设晶圆厂,这在以前只有美国公司才能制造它们。两年来,世界上最快的计算机都是在中国制造的,所以这对美国来说是一个战略问题。

据美国能源部预计,随着计算机芯片产业在未来几十年内扩大到数万亿美元的规模,计算机消耗的能量占比将从目前全美总能耗的3%飙升至20%,几乎与今天的交通运输总能耗相当。

在论文中,研究人员称,他们已将多铁材料的磁电控制开关所需的电压从3伏降低到0.5伏,并预测未来应该可以降到0.1伏左右:这仅相当于目前广泛使用的CMOS管的五分之一到十分之一。低电压就意味着低能耗:使用MESO器件表示二进制数所需的总能量仅相当于CMOS所需能量的十分之一到三十分之一。

不过,MESO器件还有很多路要走。Ramamoorthy Ramesh给了个时间表:这将需要十年。

CMOS集成电路2024年走到尽头?大家纷纷为摩尔定律续命

十年是否太长?实际上业界已经非常焦虑了。

有关摩尔定律即将乃至已经终结的论调最近几年来愈发“深入人心”,好比英伟达CEO黄仁勋,在不久前的GTC苏州直接说“摩尔定律已经完结”。

但是,业界对于延长摩尔定律实际上从来都没有死过心。

IRDS(International Roadmap for Devices and Systems)是IEEE设立的一个组织,从1965年开始,每年都会发布一份半导体领域技术路线图,之前叫做ITRS(International Technology Roadmap for Semiconductors)路线图,2016年更名为IRDS,从而全面地反应各种系统级新技术。

2017年,IRDS发布的路线图引发了轩然大波,因为它预测传统CMOS集成电路到2024年——距今仅仅6年后——就将走到尽头。

从IRDS路线图中可以看到,从2024年开始,虽然半导体工艺还还会有2.5nm、1.5nm线宽之分,但注意红框部分,这几种新工艺的栅极距等指标是没有变化的,也就是说晶体管并不会缩小,在5nm节点后就不会变了。换句话说,传统CMOS电路将在2024年走到尽头。

但是,CMOS电路在2024年“碰壁”,并不代表半导体技术就将停止发展。

IRDS白皮书中指出了新的发展方向,包括采用新的半导体材料和制造工艺缩小晶体管特征尺寸(也即所谓的“More Moore”),使用3D堆叠等创新的系统集成技术(More than Moore),以及Beyond CMOS——使用CMOS以外的新器件提升集成电路性能。

简单说,Beyond CMOS的主要思路就是制造“新型开关”来处理信息,这类器件的特性包括但不限于:高的功能密度、更高的性能提升、更低的能耗、足够稳定、成本适宜,能够进行大规模制造。

Beyond CMOS是当前学界和产业界的研究热点之一,目前大力探索中的方案就不下十几种,而英特尔在这方面自当是不遗余力。

英特尔在Beyond CMOS上有多条路(下图),其中MESO是最近获得突破的方案。

英特尔认为,与现有的CMOS解决方案相比,MESO器件可以将电压需求降低5倍,特定情况下能将能耗降低10-30倍。

最核心的一点,MESO是在室温条件下使用量子材料,相比当前采用专用芯片(DSA)等架构创新方案的前进,从CMOS到MESO的路径如果能得以实现,将是一个质的飞跃。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 摩尔定律
    +关注

    关注

    4

    文章

    637

    浏览量

    79362
  • 晶体管
    +关注

    关注

    77

    文章

    9835

    浏览量

    139486
  • 新材料
    +关注

    关注

    8

    文章

    396

    浏览量

    21439

原文标题:【Nature重磅】“超级芯片”或在十年内诞生,摩尔定律再续一命!

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    TMD取代Si,下一代半导体材料来袭

    电子发烧友网报道(文/黄山明)1965年,英特尔联合创始人戈登·摩尔提出了著名的“摩尔定律”,它预测每隔18至24个月,芯片上可容纳的晶体管数量将翻倍,从而带来性能提升
    的头像 发表于 07-15 09:02 3510次阅读

    击碎摩尔定律!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    电子发烧友网报道(文/吴子鹏)摩尔定律是由英特尔创始人之一戈登·摩尔提出的经验规律,描述了集成电路上的晶体管数量和性能随时间的增长趋势。根据摩尔定律,集成电路上可容纳的
    的头像 发表于 06-04 00:06 4206次阅读
    击碎<b class='flag-5'>摩尔定律</b>!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    混合键合中的铜连接:摩尔定律救星

    将两块多块芯片叠放在同一个封装中。这使芯片制造商能够增加处理器和内存中的晶体管数量,虽然晶体管的缩小速度已普遍放缓,但这曾推动
    的头像 发表于 02-09 09:21 236次阅读
    混合键合中的铜连接:<b class='flag-5'>或</b>成<b class='flag-5'>摩尔定律</b>救星

    互补场效应晶体管的结构和作用

    , Gate-all-Around)全环绕栅极晶体管(GAAFET)等先进结构,在减少漏电、降低功耗方面虽然取得了显著成就,但进一步微缩的挑战日益显现。为了延续摩尔定律的发展趋势,并满足未来高性能计算的需求,业界正积极研发下一代
    的头像 发表于 01-24 10:03 2517次阅读
    互补场效应<b class='flag-5'>晶体管</b>的结构和作用

    石墨烯互连技术:延续摩尔定律的新希望

    半导体行业长期秉持的摩尔定律(该定律规定芯片上的晶体管密度大约每两年应翻一番)越来越难以维持。缩小晶体管及其间互连的能力正遭遇一些基本的物理
    的头像 发表于 01-09 11:34 296次阅读

    摩尔定律是什么 影响了我们哪些方面

    摩尔定律是由英特尔公司创始人戈登·摩尔提出的,它揭示了集成电路上可容纳的晶体管数量大约每18-24个月增加一倍的趋势。该定律不仅推动了计算机硬件的快速发展,也对多个领域产生了深远影响。
    的头像 发表于 01-07 18:31 610次阅读

    短沟道二维晶体管中的掺杂诱导辅助隧穿效应

    短沟道效应严重制约了硅基晶体管尺寸的进一步缩小,限制了其在先进节点集成电路中的应用。开发新材料和新技术对于维系摩尔定律延续具有重要意义。
    的头像 发表于 12-06 11:02 515次阅读
    短沟道二维<b class='flag-5'>晶体管</b>中的掺杂诱导辅助隧穿效应

    摩尔定律时代,提升集成芯片系统化能力的有效途径有哪些?

    电子发烧友网报道(文/吴子鹏)当前,终端市场需求呈现多元化、智能化的发展趋势,芯片制造则已经进入后摩尔定律时代,这就导致先进的工艺制程虽仍然是芯片性能提升的重要手段,但效果已经不如从前,先进封装
    的头像 发表于 12-03 00:13 2575次阅读

    什么是单极型晶体管?它有哪些优势?

    单极型晶体管,也被称为单极性晶体管场效应晶体管(Field-Effect Transistor, FET),是一种在电子学中广泛使用的半导体器件。它的工作原理基于电场对半导体
    的头像 发表于 08-15 15:12 2593次阅读

    晶体管的主要材料有哪些

    晶体管的主要材料是半导体材料,这些材料在导电性能上介于导体和绝缘体之间,具有独特的电子结构和性质,使得晶体管能够实现对电流的有效控制。以下将
    的头像 发表于 08-15 11:32 2293次阅读

    “自我实现的预言”摩尔定律,如何继续引领创新

    未来的自己制定了一个远大但切实可行的目标一样, 摩尔定律是半导体行业的自我实现 。虽然被誉为技术创新的“黄金法则”,但一些事情尚未广为人知……. 1. 戈登·摩尔完善过摩尔定律的定义 在1965年的文章中,戈登·
    的头像 发表于 07-05 15:02 363次阅读

    什么是光电晶体管?光电晶体管的工作原理和结构

    光电晶体管是具有三个端子(发射极、基极和集电极)两个端子(发射极和集电极)的半导体器件,并具有光敏基极区域。虽然所有晶体管都对光敏感,但光电晶体管专门针对光检测进行了优化。它们采用扩
    的头像 发表于 07-01 18:13 2765次阅读
    什么是光电<b class='flag-5'>晶体管</b>?光电<b class='flag-5'>晶体管</b>的工作原理和结构

    降压开关稳压器如何使用串联晶体管

    电源提供,而当晶体管开关打开时,电流由电感器提供。请注意,流经电感器的电流始终沿相同方向,直接来自电源通过二极,但显然在开关周期内的不同时间。 由于
    发表于 06-18 14:19

    封装技术会成为摩尔定律的未来吗?

    你可听说过摩尔定律?在半导体这一领域,摩尔定律几乎成了预测未来的神话。这条定律,最早是由英特尔联合创始人戈登·摩尔于1965年提出,简单地说就是这样的:集成电路上可容纳的
    的头像 发表于 04-19 13:55 454次阅读
    封装技术会成为<b class='flag-5'>摩尔定律</b>的未来吗?