0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

推荐3本经典深度学习教程,会改文风的AI来了!

DPVg_AI_era 来源:lq 2018-12-12 09:21 次阅读

本文总结了2018年下半年,最火的开源框架、模型,以及社区。同时还提到一个有趣的现象,每20分钟就有一篇AI论文现世。最后作者为推荐3本经典深度学习教程

代笔们,枪手们,小心了!会改文风的AI来了!

日前,在加拿大蒙特利尔举办的AI顶会NeurIPS 2018上,来自密歇根大学和谷歌大脑的研究人员提出了一种新的面向NLP任务的机器学习新架构,不仅能够根据给定的实例生成句子,而且能够在保留句子意思的情况下,改变句子表达的感情、时态、复杂度等属性。

论文链接:

https://papers.nips.cc/paper/7757-content-preserving-text-generation-with-attribute-controls.pdf

研究人员称,这一技术有望可能用于多种用途,比如复述、小组会议、机器翻译、对话系统等。该系统可以作为今年前不久微软推出的NLP弱结构关系推理工具的有力补充。

研究人员表示,“我们通过本文解决了对句子属性的修改问题,在无需平行数据的情况下首次成功对句子的多个属性进行了修改。”

本文中介绍的AI系统可以改变句子的感情色彩,即褒贬义、正负面感情色彩的改变。数据集来自Yelp用户点评内容和IMDB影片评论

该团队首先解决感情控制问题。研究数据基于两大用户生成的文本数据集:点评应用Yelp评论数据集的过滤版本,以及IMDB网站上的大量电影评论进行,这两个数据集的句子数量分别达到44.7万和30万,用于训练系统。

在训练之后,研究人员使用12.8万条Yelp餐厅评论和3.6万条IMDB电影评论的测试数据集,尝试从具有负面情绪的句子中生成具有正面情绪的文本片段,反之亦然。

BLEU是评估机器翻译文本质量的标准化指标,本文中提出的AI系统在BLEU评估中的表现胜过了两种当前效果最好的文本生成方法。

此外,这个系统始终能够生成与输入句子相关的、语法正确的句子。在某种程度上,参与亚马逊Mechanical Turk项目的人认为模型生成的输出比以前的方法得到的输出的真实度更高。

该模型生成的句子非常连贯自然。比如,它将“柜台后面的人并不友好”转换成了“柜台上的人非常友好和乐于助人。”在另一个例子中,该模型把“这是关于这部电影,还有一个有趣的方面”,变成了这部电影“没有值得关注的质量”。

令人更加印象深刻的是,另一项测试中的研究人员使用该系统同时控制句子的多种属性,包括情绪,时态,声音和情绪等。在对多伦多BookCorpus数据集的200万个文本片段的数据集进行训练之后,模型能够将将来时句子中的指示性情绪(“John将无法住在营地里”),转换为条件时态中的虚拟语气(“John不能住在营地“)。

如上图所示,系统可以同时修改输入句子的多个属性,如感情、时态、主动/被动式以及肯定/否定等

研究人员表示,“本文表明,我们的转换模型通过各种实验和指标有效地反映了条件信息。以前的成果主要是关于句子单个属性的控制,并在两种模式之间进行转换,本文中的模型应用很容易扩展到多属性的转换场景。在这个框架下,未来方向是转换句子红具有连续值的属性,以及范围更大的语义和句法属性。“

量度标准与实验结果

表1:情感条件句子生成的定量评估。 属性兼容性表示生成的句子的标签的准确性,由预训练后的分类器来量度。句子内容的保留程度由(BLEU-1(B-1)和BLEU-4(B-4)分数)评估。 根据预训练的分类器量度生成“困惑度”指标,来评估输出句子的流畅度。 对于准确性和内容兼容性指标,数值越高更好,对于困惑度,数字越低越好。

表2:对于模型生成的句子的人类评估结果。 表中数字分数表示由真人判断为具有适当属性标签和内容的句子占输出的百分比。流利度评分采用5分制

表3:将古英语翻译成现代英语的示例。表中seq2seq模型受并行数据监控。研究人员在无监督(无并行数据)和半监督(成对和不成对数据)条件下对模型进行测试

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6142

    浏览量

    105112
  • 机器学习
    +关注

    关注

    66

    文章

    8381

    浏览量

    132428
  • nlp
    nlp
    +关注

    关注

    1

    文章

    487

    浏览量

    22015

原文标题:谷歌NeurIPS 2018:全新NLP工具炼成会改变文风的AI

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 321次阅读

    AI干货补给站 | 深度学习与机器视觉的融合探索

    ,帮助从业者积累行业知识,推动工业视觉应用的快速落地。本期亮点预告本期将以“深度学习与机器视觉的融合探索”为主题,通过讲解深度学习定义、传统机器视觉与
    的头像 发表于 10-29 08:04 185次阅读
    <b class='flag-5'>AI</b>干货补给站 | <b class='flag-5'>深度</b><b class='flag-5'>学习</b>与机器视觉的融合探索

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 331次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习
    的头像 发表于 10-23 15:25 384次阅读

    AI深度噪音抑制技术

    AI深度噪音抑制技术通过深度学习算法实现了对音频中噪声的智能消除,它在音频清晰度提升、环境适应性、实时性和自然音质保留等方面展现了巨大的优势。随着A
    的头像 发表于 10-17 10:45 391次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>深度</b>噪音抑制技术

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不
    发表于 10-14 09:12

    NVIDIA推出全新深度学习框架fVDB

    在 SIGGRAPH 上推出的全新深度学习框架可用于打造自动驾驶汽车、气候科学和智慧城市的 AI 就绪型虚拟表示。
    的头像 发表于 08-01 14:31 526次阅读

    基于AI深度学习的缺陷检测系统

    在工业生产中,缺陷检测是确保产品质量的关键环节。传统的人工检测方法不仅效率低下,且易受人为因素影响,导致误检和漏检问题频发。随着人工智能技术的飞速发展,特别是深度学习技术的崛起,基于AI深度
    的头像 发表于 07-08 10:30 1161次阅读

    人工智能、机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1118次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1201次阅读

    泰禾智能携AI智选深度学习系列新品亮相临沂花生展

    6月28-29日,2024年第十一届花生产业博览会在临沂国际会展中心盛大开幕。泰禾智能携AI智选深度学习系列新品精彩亮相展会,以其卓越的技术实力和前沿的产品创新,为用户带来更加智能、高效、便捷
    的头像 发表于 06-29 14:19 724次阅读

    FPGA在深度学习应用中或将取代GPU

    基础设施,人们仍然没有定论。如果 Mipsology 成功完成了研究实验,许多正受 GPU 折磨的 AI 开发者将从中受益。 GPU 深度学习面临的挑战 三维图形是 GPU 拥有如此大的内存和计算能力
    发表于 03-21 15:19

    【技术科普】主流的深度学习模型有哪些?AI开发工程师必备!

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络来执行特定任务。 什么是深度
    的头像 发表于 01-30 15:26 583次阅读
    【技术科普】主流的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型有哪些?<b class='flag-5'>AI</b>开发工程师必备!

    深度学习在人工智能中的 8 种常见应用

    深度学习简介深度学习是人工智能(AI)的一个分支,它教神经网络学习和推理。近年来,它解决复杂问题
    的头像 发表于 12-01 08:27 3248次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>在人工智能中的 8 种常见应用