0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI不会再有寒冬 别让AI解释自己

jmiy_worldofai 来源:cg 2018-12-17 14:39 次阅读

今天,《连线》发表了一篇专访Geoffrey Hinton的长文。

在这次加拿大G7人工智能会议上的访谈里,Hinton谈到了对谷歌军方合同的“私下”抗议,还提出了对现在AI研究的一些看法,比如:

不要让AI解释自己,那简直是个灾难。人类大多数时候都没法解释自己。

发展AI需要新型的计算硬件(他指的并不是TPU)。

我们在研究中应该追求“新想法”,不能一味看效果。从长远来看,一个全新的想法比一个微小的改进更有影响力。

另外,Hinton还说:不,不会再有AI寒冬了。

以下是采访实录:

Wired:加拿大***特鲁多在G7大会上说,人工智能带来了一些道德挑战,对此需要做更多工作,你怎么想?

Hinton:我一直很担心致命自主武器的滥用。我认为,应该有一个类似于日内瓦公约的东西,像禁止化学武器一样禁止它们。就算不是每个国家都签署这个公约,实际上它也会起到像道德旗帜一样的作用。谁没签你是能看到的。

Wired:有一封抗议Google为国防部提供无人机图像识别服务的公开信,有4500名你的同事签了名。你签了吗?

Hinton:作为一名Google高管,我认为我不应该公开表达对公司的不满,所以,我私下表达。我没有签公开信,而是找(Google联合创始人)谢尔盖·布林谈了谈。他说他对这个事情也不满,所以,这不是他们的追求。

Wired:Google决定履行完这份合同,但是不会续签,还发布了一份AI指导方针,其中就包含了不能把这项技术用于武器。

Hinton:我认为Google的选择是正确的。各种各样的东西都需要云计算,想弄清底线设在哪确实很难。我对Google设置的底线很满意,那些原则我认为很有道理。

Wired:在日常场景里,比如在社会服务、医疗等领域用软件做决策的时候,人工智能也会带来道德问题。我们应该当心什么?

Hinton:我的专业领域是让这个技术管用,不是社会政策。这里面确实有一点和我的专业技能相关,就是判断监管者该不该坚持要求你能解释AI系统的工作原理。我认为那完全是个灾难。

在大多数事情上,人类都不能解释自己的原理。你招人的时候,是基于那些可以量化的东西来做判断,再加上各种”直觉”。人们根本不知道自己是怎么做到的。如果你让人类对自己的决定做出解释,就相当于逼他们编故事。

神经网络的问题也一样。你训练了一个神经网络,它学习的是几十亿数字,代表着从训练数据中提取的知识,输入一张图片,它给出正确的决定,比如说这是不是一个行人。但如果你要问“它为什么这么想”……如果图片里有没有行人能通过任何简单的规则来判断的话,这个问题早就解决了。

Wired:所以,我们怎么会知道什么时候能信任这些系统?

Hinton:应该根据表现来管理它们。你可以用实验来检验有没有偏见。对于无人车,我认为人们现在已经算接受了,就算不知道一辆无人车怎么做到的,如果它发生的事故比人类司机少,那就是好事。我认为我们要像对人一样来对待这个问题:看他们表现如何。

△https://arxiv.org/abs/1807.04587

Wired:在你上周发表的一篇论文中,提及应该进一步研究大脑中的学习算法。这是为什么?

Hinton:大脑和现在大多数神经网络都不一样。人类大脑有大约100万亿个突触,而人工神经网络的权重通常要小1万倍。大脑使用大量的突触,从很少的样本中尽可能多的学习。而深度学习则是利用更少的神经元连接,从大量的样本中进行学习。

我认为大脑并不关注如何把大量知识压缩成几个突触的连接,而是关注如何使用大量的连接,快速的提取知识。

Wired:那应该如何构建更强大的机器学习系统?

Hinton:我们需要转向另一种计算机。幸运的是,我这里就有一个。

(Hinton说罢把手伸到包里,掏出一块耀眼的大芯片。这个芯片是英国初创公司Graphcore的原型产品,这家公司致力于为机器/深度学习算法开发新型处理器。)

△漂亮得不像实力派

大多数用来运行神经网络的计算机,甚至包括Google的专用硬件,都得使用RAM(来存储正在使用的程序)。从RAM中获取神经网络的权重代价高昂,所以一旦软件获得了权重,就会反复使用很多次。想要改变是一个成本巨大的事情。

而在Graphcore芯片上,权重存储在处理器的缓存而不是RAM中,所以不会被移走。因此某些探索会变得更容易。 比如我们可以搞个一万亿个权重的系统,但是每次训练只涉及数十亿的权重。这种方式更接近大脑。

Wired:AI和机器学习的快速增长,是否也带来了新的挑战?

Hinton:现在一个巨大的挑战是,如果你想发表一篇机器学习论文,有一些条条框框的限制。如果你用的方法,看起来效果没那么好,那就很难发表。我不认为这能鼓励人们去思考全新的方法。

现在如果你发送了一个有着全新想法的论文,被接收的可能性非常低,或者会有一些无法理解你想法的初级同行在评审,或者一些看了太多论文的资深评审者,他们都不理解你的论文,并且认为是无稽之谈。我认为这非常糟糕。

我们应该追求的,特别是在基础科学会议上,是一些全新的想法。从长远来看,一个全新的想法比一个微小的改进更有影响力。出现这个问题的原因,就是资深人士太少,而年轻人太多。

Wired:这会破坏AI领域的进展么?

Hinton:用不了几年,问题就会自行解决。困难都是暂时的。大公司、大学都已经开始培育更多的人才,大学最终也会聘请更多的教授。

Wired:一些学者警告说,目前的AI热潮还会再次进入寒冬。

Hinton:不,不会再有AI寒冬了。现在AI都已经在你的手机里了。当年经历AI寒冬时,人工智能还不是人们日常生活的一部分。而现在AI已经是了。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    29962

    浏览量

    268274
  • TPU
    TPU
    +关注

    关注

    0

    文章

    138

    浏览量

    20689

原文标题:Hinton最新专访:别让AI解释自己,AI寒冬不会再来

文章出处:【微信号:worldofai,微信公众号:worldofai】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何训练自己AI大模型

    训练自己AI大模型是一个复杂且耗时的过程,涉及多个关键步骤。以下是一个详细的训练流程: 一、明确需求和目标 首先,需要明确自己的需求和目标。不同的任务和应用领域需要不同类型的AI模型
    的头像 发表于 10-23 15:07 482次阅读

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    。 4. 物理与AI的融合 在阅读过程中,我对于物理与AI的融合有了更加深入的认识。AI for Science不仅依赖于数据,还需要结合物理定律和原理来确保模型的准确性和可解释性。这
    发表于 10-14 09:16

    AI降噪算法的USB麦克风降噪模组

    AI
    深圳德宇科技有限公司
    发布于 :2024年09月26日 11:34:09

    AI调试工具

    APIAI
    草帽王路飞
    发布于 :2024年09月02日 11:31:57

    云开发AI助手

    AI
    草帽王路飞
    发布于 :2024年07月22日 14:41:54

    视频3--场景自动化AI助手

    AI
    草帽王路飞
    发布于 :2024年07月22日 11:16:13

    平衡创新与伦理:AI时代的隐私保护和算法公平

    在人工智能技术飞速发展的今天,它不仅带来了前所未有的便利和效率,也暴露出了一系列伦理和隐私问题。从数据隐私侵犯到“信息茧房”的形成,再到“大数据杀熟”、AI歧视和深度伪造技术的威胁,AI的应用似乎
    发表于 07-16 15:07

    AI芯片哪里买?

    AI芯片
    芯广场
    发布于 :2024年05月31日 16:58:19

    国内EDA工具AI技术应用现状及发展动态分析

    今年谈EDA工具融入AI已经不会再有人表达惊讶了,毕竟国际EDA巨头们都在持续做宣传。IIC Shanghai活动的不少EDA企业也在谈AI
    发表于 04-12 10:43 817次阅读
    国内EDA工具<b class='flag-5'>AI</b>技术应用现状及发展动态分析

    不会AI的人被淘汰?讯飞AI鼠标AM30助你迎接AI时代

    不会AI的人被淘汰?讯飞智能鼠标助你迎接AI时代 随着AI时代的到来,人们对于智能助手的需求也日益增长。 想在这个竞争激烈的时代中不被淘汰,就需要一款强大的工具来提升
    的头像 发表于 03-23 13:44 687次阅读
    <b class='flag-5'>不会</b>用<b class='flag-5'>AI</b>的人被淘汰?讯飞<b class='flag-5'>AI</b>鼠标AM30助你迎接<b class='flag-5'>AI</b>时代

    ai_reloc_network.h引入后,ai_datatypes_format.h和formats_list.h报错的原因?

    当准备使用神经网络的relocatable方式,将ai_reloc_network.h头文件加入程序编译后,ai_datatypes_format.h在cubeIDE和Keilc里分别报如下错误
    发表于 03-14 06:23

    NanoEdge AI的技术原理、应用场景及优势

    NanoEdge AI 是一种基于边缘计算的人工智能技术,旨在将人工智能算法应用于物联网(IoT)设备和传感器。这种技术的核心思想是将数据处理和分析从云端转移到设备本身,从而减少数据传输延迟、降低
    发表于 03-12 08:09

    AI大模型会不会取代电子工程师?

    AI大模型
    电子发烧友网官方
    发布于 :2024年01月02日 15:11:43

    新火种AI|美光、英伟达大涨,AI引爆后,芯片行业寒冬已过?

    AI需求暴增,芯片行业寒冬或已过
    的头像 发表于 12-22 09:48 366次阅读
    新火种<b class='flag-5'>AI</b>|美光、英伟达大涨,<b class='flag-5'>AI</b>引爆后,芯片行业<b class='flag-5'>寒冬</b>已过?

    新火种AI|比尔盖茨表态:生成式AI已成过去接下来是可解释AI的天下

    作者:小岩 编辑:彩云 根据财联社消息,11月28日,比尔·盖茨针对AI未来的发展趋势发表了自己的看法。他认为,当下生成式AI的发展已经达到了极限,很难再有突破性的进展。下一个
    的头像 发表于 12-06 10:36 731次阅读
    新火种<b class='flag-5'>AI</b>|比尔盖茨表态:生成式<b class='flag-5'>AI</b>已成过去接下来是可<b class='flag-5'>解释</b><b class='flag-5'>AI</b>的天下