虽然有多种解读,但业界一般认为,大数据有四个“V”字开头的特征:Volume(容量), Variety(种类), Velocity(速度)和最重要的Value(价值)。Volume是指大数据巨大的数据量与数据完整性。张亚勤说,IT业界所指的数据,诞生不过60多年。而一直到个人电脑普及前,由于存储、计算和分析工具的技术和成本限制,许多自然界和人类社会值得记录的信号,并未形成数据。几十年前,气象、地质、石油物探、出版业、媒体业和影视业是大量、持续产出信号的行业,但那时90%以上采用的是存储模拟信号,难以通过计算设备和软件进行直接分析。拥有大量资金和人才的政府和企业,也只能把少量最关键的信号,进行抽取、转换、装载到数据库中。
张亚勤认为,尽管业界对达到怎样的数量级才算是大数据并无定论,但在很多行业的应用场景里,数据集本身的大小并不是最重要的,是否完整才最重要。Variety则意味着要在海量、种类繁多的数据间发现其内在关联。互联网时代,各种设备通过网络连成了一个整体。进入以互动为特征的Web2.0时代,个人计算机用户不仅可以通过网络获取信息,还成为了信息的制造者和传播者。这个阶段,不仅是数据量开始了爆炸式增长,数据种类也开始变得繁多。
“这必然促使我们对海量数据进行分析、处理和集成,找出原本看来毫无关系的那些数据的‘关联性’,把似乎没有用的数据变成有用的信息,以支持我们做出的判断。”张亚勤说。
Velocity可以理解为更快地满足实时性需求。数据的实时化需求正越来越清晰。对普通人而言,开车去吃饭,会先用移动终端中的地图查询餐厅的位置,预计行车路线的拥堵情况,了解停车场信息甚至是其他用户对餐厅的评论。吃饭时,会用手机拍摄食物的照片,编辑简短评论发布到微博或者微信上,还可以用LBS(基于位置的服务)应用查找在同一间餐厅吃饭的人,看有没有好友在附近……
张亚勤说,如今,通过各种有线和无线网络,人和人、人和各种机器、机器和机器之间产生无处不在的连接,这些连接不可避免地带来数据交换。而数据交换的关键是降低延迟,以近乎实时——这意味着小于250毫秒——的方式呈献给用户。“但比前面3个‘V’更重要的,就是Value,它是大数据的最终意义——获得洞察力和价值。”张亚勤说,大数据的崛起,正是在人工智能、机器学习和数据挖掘等技术的迅速发展驱动下,呈现这么一个过程:将信号转化为数据,将数据分析为信息,将信息提炼为知识,以知识促成决策和行动。
目前,云计算已经普及并成为IT行业主流技术,其实质是在计算量越来越大、数据越来越多、越来越动态、越来越实时的需求背景下被催生出来的一种基础架构和商业模式。个人用户将文档、照片、视频、游戏存档记录上传至“云”中永久保存,企业客户根据自身需求,可以搭建自己的“私有云”,或托管、或租用“公有云”上的IT资源与服务,这些都已不是新鲜事。可以说,云是一棵挂满了大数据的苹果树。
大数据的出现,正在引发全球范围内深刻的技术与商业变革。在技术上,大数据使从数据当中提取信息的常规方式发生了变化。“在技术领域,以往更多是依靠模型的方法,现在我们可以借用规模庞大的数据,用基于统计的方法,有望使语音识别、机器翻译这些技术领域在大数据时代取得新的进展。”张亚勤说。
-
大数据
+关注
关注
64文章
8863浏览量
137285
发布评论请先 登录
相关推荐
评论