0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是量子霍尔效应?

w0oW_guanchacai 来源:xx 2019-01-01 11:07 次阅读

2018年12月17日复旦大学物理学系修发贤课题组在《自然》杂志上刊发了他们的研究成果:在拓扑半金属砷化铬纳米片中观测到由外尔轨道形成的新型三维量子霍尔效应。该项研究成果我国科学家首次在三维空间中发现量子的霍尔效应。

什么是霍尔效应

在中学物理课本我们都学过霍尔效应,它实际上一种电磁效应的。我们给一块半导体通电,在导体外面外加一个与电流方面垂直的磁场,磁场会使半导体中的电子与空穴(可以视为正电荷)受到不同方向的洛伦兹力而在不同方面上聚集,聚集起来的电子和空穴之间会产生电场,此时在半导体两侧产生了垂直于磁场和电流方向的电压,而且在此电压生成的电场力和磁场的洛伦兹力平衡以后,后来的电子和空穴就不在聚集,顺利通过不发生偏移。

这种现象是由美国物理学家霍尔于1879年研究金属导电机制的时候发现的,所以命名为“霍尔效应”,且在实际生活中产生了广泛的应用,根据霍尔效应做成的霍尔器件,就是以磁场为工作媒介,将物体的运动参数转变为数字电压的形式输出,使之具备传感和开关功能。

如:汽车的点火系统,设计人员将霍尔传感器放在分电器内取代机械断电器,用作机械断电器,用作点火脉冲发生器。这种霍尔点火发生器随着转速变化的磁场在带电半导体内产生脉冲电压,控制电控单元的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的环境,同时能够精确的控制点火,具有明显的优势。

什么是量子霍尔效应(二维)

我们上面所说的霍尔效应是在三维的导体中实现的,其中的电子可以在导体中自由运动。现在科学家通过某些手段将电子限制在一个二维平面内,之后添加一个垂直于该平面的磁场,同时沿着二维电子平面一个方向通以电流,此时在二维平面的另一个方向上测量到电压。这种现象称为量子霍尔效应,属于量子力学版的霍尔效应。

该现象是由德国物理学家冯•克利青发现,并因此获得1985年的诺贝尔物理学奖。但是为何在霍尔效应提出100年后才有人发现量子霍尔效应。主要原因是理想的二维电子气难以实现,在半导体技术高速发展之后,人们才能在“金属-氧化物-半导体场效应晶体管”中实现比较理想的二维电子气,而且想要观测到这种现象还需要提供极低温和强磁场环境。

量子霍尔效应与上一节提到的霍尔效应最大不同之处在于横向电压对磁场的响应不同。此时横向电阻(实验中电流恒定,横向电阻就相当于横向电压)与磁场不再呈现线性关系,而是出现量子化平台。图中红线为横向电阻随磁场强度增大而增大,但是在这一过程中形成了若干个横向电阻不变的平台。但是在磁场强度很小情况下,横向电阻与磁场强度成线性关系。还有一个现象就是量子霍尔效应中纵向电阻(绿线)随磁场变化很奇特,在横向电阻达到平台时,纵向电阻为0,而且在磁场很小的情况下,纵向电阻为常数。

对于二维的量子霍尔效应,可以理解为平面内部的电子在洛伦兹力的作用下不断沿着等能面旋转做周期性运动,不参与导电。而在边缘的电子旋转到一半后,受到边界的反弹,再次做半圆运动,以这种方式不断向前运输,在量子霍尔效应中,真正参与导电的实际上是这种边缘电子,它几乎不与其他电子碰撞,而是像子弹一样一颗一颗射向目的地。这种机制产生的电阻与具体的材料性质无关,只与电子本身的性质有关,在磁场很小的情况下会有更多的电子参与运输,电子越多,横向电阻就越小。

修发贤课题组发现三维量子霍尔效应

上面我们提到的量子霍尔效应是将电子限制在二维平面内,在强大的磁场作用下,电子在平面的边缘做一维规则的运动,且测量得到电压。这些实验都是在二维体系中进行的。

修发贤教授打了一个简单的比喻,在一间屋子里除了上表面和下表面,中间还存在一个空间,现在人们知道,在“天花板”和“地面”上,电子沿着“边界线”做着有规则的运动,一列朝前,一列朝后,像是两列各自轨道上疾驰的列车,那么,立体空间中呢?

修发贤团发现量子霍尔效应在三维空间中同样存在。2016年10月,他们团队第一次用高质量的三维砷化铬纳米片测量到了量子霍尔效应,如同目睹到汽车飞到空中一样。

但是当时对于这个现象他们团队提出两种猜想:一种可能的方式是从上表面到下表面的体态穿越,电子做了垂直运动;另一种可能是电子在上下两个表面,即在两个二维体系中,分别独立形成了量子霍尔效应。

于是他们想了一个办法,创新性利用楔形样品实现可控厚度变化,如同房顶倾斜了,房子内部上下表面的距离就发生了变化。

通过测量量子霍尔平台出现的磁场,可以用公式推算出量子霍尔台阶。实验发现,电子在其中的运动轨道能量直接受到样品厚度的影响。这说明,随着样品厚度的变化,电子的运动时间也在变。所以,电子在做与样品厚度相关的纵向运动,其隧穿行为被证明了。

“电子在上表面走四分之一圈,穿越到下表面,完成另外一个四分之一圈后,再穿越回上表面,形成半个闭环,这个隧穿行为是无耗散的,所以可以保证电子在整个回旋运动中仍然是量子化的。”修发贤说,整个轨道就是三维的“外尔轨道”,是砷化镉纳米结构中量子霍尔效应的来源。

量子霍尔效应是20世纪以来凝聚态物理领域最重要的科学发现之一。而三维量子霍尔效应首次被中国科学家揭开了,修发贤课题组的发现为未来三维空间量子化传输提供了新思路和试验基础,未来将在光电探测、拓扑量子计算、低功率电子器件等方面发挥重大应用价值。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子
    +关注

    关注

    0

    文章

    475

    浏览量

    25448
  • 霍尔效应
    +关注

    关注

    4

    文章

    444

    浏览量

    43052

原文标题:中国科学家首次揭示三维量子霍尔效应

文章出处:【微信号:guanchacaijing,微信公众号:科工力量】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    霍尔效应及应用

    物理学家克利青(K.V.Klitzing)因发现量子霍尔效应而荣获1985年度诺贝尔物理学奖;美籍华裔物理学家崔琦、美籍德裔物理学家施特默(H.L.Stormer)和美国物理学家劳克林
    发表于 10-23 17:46

    霍尔效应基本介绍(深圳响拇指团队)

    量子霍尔效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖。 之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林
    发表于 07-10 17:20

    让超级计算机替换成平板电脑有可能吗

    `  量子反常霍尔效应,对普通人来说,拗口而晦涩。但在物理学家眼中,它“神奇”又“美妙”。因为它的发现可能带来下一次信息技术革命。采用这种技术设计集成电路和元器件,千亿次的超级计算机有望做成平板电脑
    发表于 11-27 11:31

    什么是“量子自旋霍尔效应”?

    "量子自旋霍尔效应"是指找到了电子自转方向与电流方向之间的规律,利用这个规律可以使电子以新的姿势非常有序地"舞蹈",从而使能量耗散很低。在特定的量子阱中,在无
    发表于 12-13 16:40

    量子霍尔效应:电子运动的“交通规则”

    长时间使用计算机时,会遇到计算机发热、能量损耗、速度变慢等问题,这是因为常态下芯片中的电子运动没有特定的轨道,它们相互碰撞从而发生能量损耗。量子霍尔效应的发现,为我们突破摩尔定律和集成电路的发展提供了一个全新的原理。这是物理学基
    的头像 发表于 01-11 11:13 4620次阅读

    霍尔在微波炉中的应用和量子霍尔效应的详细资料说明

    微波炉是运用食物在微波场中吸收微波能量而使自身加热的烹饪器具。简略来说,当微波辐射到食物上时,食物自身的水分子取向随微波场而变化。跟着水分子的运动以及和相邻分子的相互作用而发生冲突现象,然后水温升高,食物的温度自然而然就上升了。
    发表于 04-01 08:00 7次下载
    <b class='flag-5'>霍尔</b>在微波炉中的应用和<b class='flag-5'>量子</b><b class='flag-5'>霍尔</b><b class='flag-5'>效应</b>的详细资料说明

    霍尔效应在微波炉中的应用和量子霍尔效应的详细资料说明

    微波炉是运用食物在微波场中吸收微波能量而使自身加热的烹饪器具。简略来说,当微波辐射到食物上时,食物自身的水分子取向随微波场而变化。跟着水分子的运动以及和相邻分子的相互作用而发生冲突现象,然后水温升高,食物的温度自然而然就上升了。
    发表于 04-25 08:00 8次下载
    <b class='flag-5'>霍尔</b><b class='flag-5'>效应</b>在微波炉中的应用和<b class='flag-5'>量子</b><b class='flag-5'>霍尔</b><b class='flag-5'>效应</b>的详细资料说明

    让无数科学家竞折腰的“三维量子霍尔效应”,到底是什么?

    可以说在修发贤课题组的发现之前,科学家对于量子霍尔效应的研究仅仅停留于二维体系,而对于三维体系也只有无尽的猜测。修发贤团队发现了由三维“外尔轨道( Weyl orbits )”形成的新型三维
    的头像 发表于 05-14 14:23 6731次阅读
    让无数科学家竞折腰的“三维<b class='flag-5'>量子</b><b class='flag-5'>霍尔</b><b class='flag-5'>效应</b>”,到底是什么?

    南方科大与中科大联手 验证三维量子霍尔效应

    首先我们需要知道什么是霍尔效应。此现象由美国物理学家E.霍尔(Edwin Hall)于1879年在实验中发现,以其人名命名流传于世。
    的头像 发表于 05-14 14:24 2533次阅读
    南方科大与中科大联手 验证三维<b class='flag-5'>量子</b><b class='flag-5'>霍尔</b><b class='flag-5'>效应</b>

    首次在零磁场下实现量子反常霍尔绝缘体中的陈数调控

    量子反常霍尔效应是一种无需外加磁场的量子霍尔效应,是微观尺度下电子的
    的头像 发表于 12-17 16:26 1504次阅读

    量子霍尔效应详解

    感受不深,但被超导电性关联起来的物理却已经覆盖物质科学的诸多分支。一是量子霍尔效应 (quantum Hall effect, QHE):自半导体异质结二维电子气中发现量子
    的头像 发表于 07-25 11:53 5561次阅读

    拓扑材料周期表

    最著名的例子可能是砷化镓,它是一种二维半导体,常用于整数量子霍尔效应的实验中。在新一代拓扑绝缘体中,最著名的是硒化铋,但并未引起像砷化镓那样的广泛关注。(译者注:整数量子
    的头像 发表于 06-12 15:51 564次阅读

    浅谈量子霍尔效应

    整数霍尔效应和分数霍尔效应是再明显不过的磁通量量子化证据。把霍尔器件的边界看作等效回路,而不是应
    的头像 发表于 10-16 13:27 651次阅读

    什么是量子反常霍尔效应量子反常霍尔效应有多反常?

    长时间使用计算机时,会遇到计算机发热、能量损耗、速度变慢等问题,这是因为常态下芯片中的电子运动没有特定的轨道,它们相互碰撞从而发生能量损耗。量子霍尔效应的发现,为我们突破摩尔定律和集成电路的发展提供了一个全新的原理。
    的头像 发表于 11-09 10:37 1711次阅读
    什么是<b class='flag-5'>量子</b>反常<b class='flag-5'>霍尔</b><b class='flag-5'>效应</b>?<b class='flag-5'>量子</b>反常<b class='flag-5'>霍尔</b><b class='flag-5'>效应</b>有多反常?

    多层石墨烯中的分数量子霍尔效应解析

    霍尔效应在普通的导体中是线性的,即霍尔电阻和磁场强度成正比。但是,在一些特殊的材料中,当磁场很强时,霍尔效应会出现非线性的行为,
    的头像 发表于 02-26 09:54 612次阅读