0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

以一个真实网站的验证码为例,实现了基于一下KNN的验证码识别

马哥Linux运维 来源:lq 2018-12-24 17:27 次阅读

很多网站登录都需要输入验证码,如果要实现自动登录就不可避免的要识别验证码。本文以一个真实网站的验证码为例,实现了基于一下KNN的验证码识别。

准备工作

这里我们使用opencv做图像处理,所以需要安装下面两个库

pip3 install opencv-pythonpip3 install numpy

识别原理

我们采取一种有监督式学习的方法来识别验证码,包含以下几个步骤

图片处理 - 对图片进行降噪、二值化处理

切割图片 - 将图片切割成单个字符并保存

人工标注 - 对切割的字符图片进行人工标注,作为训练集

训练数据 - 用KNN算法训练数据

检测结果 - 用上一步的训练结果识别新的验证码

下面我们来逐一介绍一下每一步的过程,并给出具体的代码实现。

图片处理

先来看一下我们要识别的验证码是长什么样的

可以看到,字符做了一些扭曲变换。仔细观察,还可以发现图片中间的部分添加了一些颗粒化的噪声。

我们先读入图片,并将图片转成灰度图,代码如下

import cv2im = cv2.imread(filepath)im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

经过上面的处理,我们的彩色图片变成了下面这样

将图片做二值化处理,代码如下

ret, im_inv = cv2.threshold(im_gray,127,255,cv2.THRESH_BINARY_INV)

127是我们设定的阈值,像素值大于127被置成了0,小于127的被置成了255。处理后的图片变成了这样

接下来,我们应用高斯模糊对图片进行降噪。高斯模糊的本质是用高斯核和图像做卷积,代码如下

kernel = 1/16*np.array([[1,2,1], [2,4,2], [1,2,1]])im_blur = cv2.filter2D(im_inv,-1,kernel)

降噪后的图片如下

可以看到一些颗粒化的噪声被平滑掉了。

降噪后,我们对图片再做一轮二值化处理

ret, im_res = cv2.threshold(im_blur,127,255,cv2.THRESH_BINARY)

现在图片变成了这样

好了,接下来,我们要开始切割图片了。

切割图片

这一步是所有步骤里最复杂的一步。我们的目标是把最开始的图片切割成单个字符,并把每个字符保存成如下的灰度图

首先我们用opencv的findContours来提取轮廓

im2, contours, hierarchy = cv2.findContours(im_res, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

我们把提取的轮廓用矩形框起来,画出来是这样的

可以看到,每个字符都被检测出来了。

但这只是理想情况,很多时候,相邻字符有粘连的会被识别成同一个字符,比如像下面的情况

要处理这种情况,我们就要对上面的图片做进一步的分割。字符粘连会有下面几种情况,我们逐一来看下该怎么处理。

4个字符被识别成3个字符

这种情况,对粘连的字符轮廓,从中间进行分割,代码如下

result = []for contour in contours: x, y, w, h = cv2.boundingRect(contour) if w == w_max: # w_max是所有contonur的宽度中最宽的值 box_left = np.int0([[x,y], [x+w/2,y], [x+w/2,y+h], [x,y+h]]) box_right = np.int0([[x+w/2,y], [x+w,y], [x+w,y+h], [x+w/2,y+h]]) result.append(box_left) result.append(box_right) else: box = np.int0([[x,y], [x+w,y], [x+w,y+h], [x,y+h]]) result.append(box)

分割后,图片变成了这样

4个字符被识别成2个字符

4个字符被识别成2个字符有下面两种情况

对第一种情况,对于左右两个轮廓,从中间分割即可。对第二种情况,将包含了3个字符的轮廓在水平方向上三等分。具体代码如下

result = []for contour in contours: x, y, w, h = cv2.boundingRect(contour) if w == w_max and w_max >= w_min * 2: # 如果两个轮廓一个是另一个的宽度的2倍以上,我们认为这个轮廓就是包含3个字符的轮廓 box_left = np.int0([[x,y], [x+w/3,y], [x+w/3,y+h], [x,y+h]]) box_mid = np.int0([[x+w/3,y], [x+w*2/3,y], [x+w*2/3,y+h], [x+w/3,y+h]]) box_right = np.int0([[x+w*2/3,y], [x+w,y], [x+w,y+h], [x+w*2/3,y+h]]) result.append(box_left) result.append(box_mid) result.append(box_right) elif w_max < w_min * 2:        # 如果两个轮廓,较宽的宽度小于较窄的2倍,我们认为这是两个包含2个字符的轮廓        box_left = np.int0([[x,y], [x+w/2,y], [x+w/2,y+h], [x,y+h]])        box_right = np.int0([[x+w/2,y], [x+w,y], [x+w,y+h], [x+w/2,y+h]])        result.append(box_left)        result.append(box_right)    else:        box = np.int0([[x,y], [x+w,y], [x+w,y+h], [x,y+h]])        result.append(box)

分割后的图片如下

4个字符被识别成1个字符

这种情况对轮廓在水平方向上做4等分即可,代码如下

result = []contour = contours[0]x, y, w, h = cv2.boundingRect(contour)box0 = np.int0([[x,y], [x+w/4,y], [x+w/4,y+h], [x,y+h]])box1 = np.int0([[x+w/4,y], [x+w*2/4,y], [x+w*2/4,y+h], [x+w/4,y+h]])box2 = np.int0([[x+w*2/4,y], [x+w*3/4,y], [x+w*3/4,y+h], [x+w*2/4,y+h]])box3 = np.int0([[x+w*3/4,y], [x+w,y], [x+w,y+h], [x+w*3/4,y+h]])result.extend([box0, box1, box2, box3])

分割后的图片如下

对图片分割完成后,我们将分割后的单个字符的图片存成不同的图片文件,以便下一步做人工标注。存取字符图片的代码如下

for box in result: cv2.drawContours(im, [box], 0, (0,0,255),2) roi = im_res[box[0][1]:box[3][1], box[0][0]:box[1][0]] roistd = cv2.resize(roi, (30, 30)) # 将字符图片统一调整为30x30的图片大小 timestamp = int(time.time() * 1e6) # 为防止文件重名,使用时间戳命名文件名 filename = "{}.jpg".format(timestamp) filepath = os.path.join("char", filename) cv2.imwrite(filepath, roistd)

字符图片保存在名为char的目录下面,这个目录里的文件大致是长这样的(文件名用时间戳命名,确保不会重名)

接下来,我们开始标注数据。

人工标注

这一步是所有步骤里最耗费体力的一步了。为节省时间,我们在程序里依次打开char目录中的每张图片,键盘输入字符名,程序读取键盘输入并将字符名保存在文件名里。代码如下

files = os.listdir("char")for filename in files: filename_ts = filename.split(".")[0] patt = "label/{}_*".format(filename_ts) saved_num = len(glob.glob(patt)) if saved_num == 1: print("{} done".format(patt)) continue filepath = os.path.join("char", filename) im = cv2.imread(filepath) cv2.imshow("image", im) key = cv2.waitKey(0) if key == 27: sys.exit() if key == 13: continue char = chr(key) filename_ts = filename.split(".")[0] outfile = "{}_{}.jpg".format(filename_ts, char) outpath = os.path.join("label", outfile) cv2.imwrite(outpath, im)

这里一共标注了大概800张字符图片,标注的结果存在名为label的目录下,目录下的文件是这样的(文件名由原文件名+标注名组成)

接下来,我们开始训练数据。

训练数据

首先,我们从label目录中加载已标注的数据

filenames = os.listdir("label")samples = np.empty((0, 900))labels = []for filename in filenames: filepath = os.path.join("label", filename) label = filename.split(".")[0].split("_")[-1] labels.append(label) im = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE) sample = im.reshape((1, 900)).astype(np.float32) samples = np.append(samples, sample, 0)samples = samples.astype(np.float32)unique_labels = list(set(labels))unique_ids = list(range(len(unique_labels)))label_id_map = dict(zip(unique_labels, unique_ids))id_label_map = dict(zip(unique_ids, unique_labels))label_ids = list(map(lambda x: label_id_map[x], labels))label_ids = np.array(label_ids).reshape((-1, 1)).astype(np.float32)

接下来,训练我们的模型

model = cv2.ml.KNearest_create()model.train(samples, cv2.ml.ROW_SAMPLE, label_ids)

训练完,我们用这个模型来识别一下新的验证码。

检测结果

下面是我们要识别的验证码

对于每一个要识别的验证码,我们都需要对图片做降噪、二值化、分割的处理(代码和上面的一样,这里不再重复)。假设处理后的图片存在变量im_res中,分割后的字符的轮廓信息存在变量boxes中,识别验证码的代码如下

for box in boxes: roi = im_res[box[0][1]:box[3][1], box[0][0]:box[1][0]] roistd = cv2.resize(roi, (30, 30)) sample = roistd.reshape((1, 900)).astype(np.float32) ret, results, neighbours, distances = model.findNearest(sample, k = 3) label_id = int(results[0,0]) label = id_label_map[label_id] print(label)

运行上面的代码,可以看到程序输出

yy4e

图片中的验证码被成功地识别出来。

我们测试了下识别的准确率,取100张验证码图片(存在test目录下)进行识别,识别的准确率约为82%。看到有人说用神经网络识别验证码,准确率可以达到90%以上,下次有机会可以尝试一下。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 图像处理
    +关注

    关注

    27

    文章

    1292

    浏览量

    56756
  • 验证码
    +关注

    关注

    2

    文章

    20

    浏览量

    4712

原文标题:太嚣张了!他竟用 Python 绕过了“验证码”

文章出处:【微信号:magedu-Linux,微信公众号:马哥Linux运维】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    12306图片验证码难倒了谁?

    验证码的清晰度也不高,识别起来比较困难。有些关键词还从变成了两。0  记者登录12306时,就碰到了系统需要
    发表于 12-08 10:29

    无法验证邮箱,总是提示验证码错误,验证码明明是正确的。

    `无法验证邮箱,总是提示验证码错误,验证码明明是正确的。是不是系统的bug?`
    发表于 05-12 10:41

    平台是如何高效的破解市面上各家验证码平台的各种形式验证码的?

    通过了这个验证码识别才返回数据。对于般的黑灰产而言,其是没有应对验证码手段的,于是就获取不到数据。打平台的出现则解决
    发表于 11-01 15:21

    多样变换的手写验证码自动识别算法

    提出了种多样变换的手写验证码自动识别算法,对彩色验证码进行识别主要包括彩色验证码的二值化、手写
    发表于 12-20 14:14 0次下载

    简单地描述了如何用机器学习绕过E-ZPass New York网站验证码

    让我们起攻破世界上最流行的WordPress的验证码插件每个人都讨厌验证码——在你被允许访问网站
    的头像 发表于 01-22 09:15 6369次阅读
    简单地描述了如何用机器学习绕过E-ZPass New York<b class='flag-5'>网站</b>的<b class='flag-5'>验证码</b>

    SQLyog_12.4.1_带验证码

    SQLyog_12.4.1_带验证码.rar
    发表于 04-12 21:03 22次下载

    套基于GAN的验证码AI识别系统,能在0.5秒之内识别验证码

    近日,英国兰卡斯特大学、中国西北大学、北京大学的计算机科学家们共同开发了种AI系统,能够在短短0.5秒内识别出多种验证码。该系统已在不同的33
    的头像 发表于 12-16 10:02 5042次阅读

    验证码层出不穷?试试这个自动跳过验证码的工具

    reCAPTCHA,要你辨认出图中的XX,点了一次又一次还是结果错误,简直抓狂!迫不得已之下,只能祭出这款自动跳过reCAPTCHA验证码的工具
    的头像 发表于 11-15 10:42 5979次阅读

    验证码太麻烦,自动跳过验证码神器试

    reCAPTCHA,要你辨认出图中的XX,点了一次又一次还是结果错误,简直抓狂!迫不得已之下,只能祭出这款自动跳过reCAPTCHA验证码的工具。 像这种验证码,要你认出图中的桥,要
    的头像 发表于 11-15 11:15 1w次阅读

    爬虫实现目标网站验证码登陆

    在爬虫访问目标网站的过程中,很多网站为了避免被恶意访问,需要设置验证码登录,这样是为了避免非人类的访问。今天我们学习如何使用Python爬虫实现
    发表于 12-11 15:27 2430次阅读

    带带弟弟OCR通用验证码识别SDK免费开源版

    在使用爬虫登录网站的时候,经常输入用户名和密码后会遇到验证码,简单点的有字母验证码,复杂点的有滑块
    的头像 发表于 03-30 17:26 4686次阅读

    短信验证码爆破重置

    以前倒是遇到过不少四位数验证码爆破的,但是这种可以结合短信遍历,短信验证码只能验证三次的,最后能成功利用的还是第
    的头像 发表于 09-07 09:14 5091次阅读

    验证码到底在验证啥?聊验证码是怎么为难我们人类的

    在文章开头,老狐先给大家玩验证码的游戏,猜出图中验证码字母。
    的头像 发表于 08-12 10:25 2109次阅读
    <b class='flag-5'>验证码</b>到底在<b class='flag-5'>验证</b>啥?聊<b class='flag-5'>一</b>聊<b class='flag-5'>验证码</b>是怎么为难我们人类的

    Java 中验证码的使用

    今天我们讲一下在 Java 中验证码的使用。 验证码生成 本效果是利用easy-captcha工具包实现,首先需要添加相关依赖到pom.xml中,代码如下: com .github.w
    的头像 发表于 09-25 11:11 1049次阅读
    Java 中<b class='flag-5'>验证码</b>的使用

    SpringBoot分布式验证码登录方案

    传统的项目大都是基于session交互的,前后端都在项目里面,比如传统的SSH项目或者些JSP系统,当前端页面触发到获取验证码请求,可以将验证
    的头像 发表于 10-12 17:34 728次阅读
    SpringBoot分布式<b class='flag-5'>验证码</b>登录方案