0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

2018年ML/AI领域最重要的进展是什么?

jmiy_worldofai 来源:lq 2018-12-26 14:56 次阅读

这一年都有哪些重要进展呢?2018年即将过去,一些大牛也给出了自己的看法。

刚刚,前Quora技术VP、AI领域技术专家Xavier Amatriain在Quora上回答了一个相关的问题:2018年ML/AI领域最重要的进展是什么?

他在答案中给出了4个方面:

答案发布之后,便引发了大量围观,Quora上点赞近400,Yann LeCun也在Twitter上转发推荐

当然,答案不仅仅只有这4句话,Amatriain也都给出了解释。

炒作降温

2017年,是AI炒作无所不在的一年。最突出的,就是马斯克和扎克伯格等各方大佬就AI对于人类是福是祸进行了隔空论战。这些论战为AI赚足了注意力。

Amatriain表示,与2017年相比,我们好像冷静下来了。一个主要的原因可能是这些大佬们忙于处理其他事情了。

比如Facebook深陷数据与隐私旋涡,麻烦事情不断。马斯克也历经特斯拉生产地狱,度过了艰难的一年。

与此同时,虽然很多人都认为自动驾驶以及类似的技术正在向前发展,但就目前事故不断的情况,所谓的“明天”,还有很远。

更关注具体问题

相对于AI是福是祸的讨论,2018年对AI的关注也开始变得愈加务实了。

首先是公平性。2018年,对公平性的讨论,并不仅仅限于发表一些论文或者言论。谷歌还上线了相应的课程。

谷歌推出针对AI歧视的新课程!60分钟的ML公平自学训练模块 | 资源

其次是可解释性和因果关系。因果关系之所以重新成为了人们关注的焦点,主要是因为图灵奖得主、贝叶斯网络之父Judea Pearl出版了《The Book of Why》一书,在Twitter上引发了关于因果关系的大讨论。

而且,ACM Recsys上获得最佳论文奖的论文,也探讨了如何在嵌入中包含因果关系的问题。

讨论也不仅仅限于学界,大众媒体《大西洋月刊》也发表文章指出,这是对现有人工智能方法的“挑战”。

虽然因果关系引发了不少的讨论,但也有许多学者认为,从某种程度上来说, 因果关系其实分散了人们对理论的关注,应该关注更加具体的问题,比如模型的可解释性。

其中最具代表性的,就是华盛顿大学Marco Tulio Ribeiro等人发表的论文,这篇论文是对著名的LIME(一种解释任何机器学习分类器的预测的技术)模型的跟进。

论文链接:

https://homes.cs.washington.edu/~marcotcr/aaai18.pdf

深度学习在NLP领域大放异彩

2018年,深度学习依旧受到了质疑。CMU学者Simon DeDeo在Twitter上猛烈炮轰Google Brain团队,称这技术(机器学习)现在所做的事情,跟1990年没什么差别,顶多就是规模更大,但并没有给我们带来比20年前更深刻的见解。

“Google只认钱!机器学习20年没进步”,CMU学者开炮

Amatriain说,深度学习等技术并没有止步不前,还有很多领域没有运用相关的技术。具体来说,深度学习在计算机视觉之外的领域取得了前所未有的成功。

最为突出的就是NLP领域。谷歌的Smart Compose(Gmail中智能预测拼写神经网络)和Duplex对话系统(会打电话的AI),可以说是2018年最令人印象深刻的两个AI应用了。

NLP领域的进展,也不仅仅只体现在应用上。在语言模型上也有了很大的进步。最大的功臣是Fast.ai的UMLFit,推广了相关的概念与想法。

然后是其他的方法,比如艾伦研究所的ELMo、OpenAI的Transformers、谷歌最近的BERT等等,都取得了非常好的效果。

它们提供了即用型的预训练和通用模型,可以针对特定任务微调。因此,这些模型的出现,也被描述为“NLP的Imagenet时刻”。

除了这些之外,还有其他一些进步,比如Facebook的多语言嵌入。而且,我们也看到了这些方法被整合到通用的NLP框架中的速度变得非常快了,比如AllenNLP或Zalando的FLAIR。

关于NLP领域的总结,还有一篇文章,推荐给你阅读:

围绕着数据改进,深度学习领域仍然有非常有趣的进展。

比如说,对于深度学习非常关键的数据扩充(data augmentation)在今年有了新的进展。谷歌发布了auto-augment,一种深度强化学习方法,可以自动扩充训练数据。

一个更加极端想法是用合成数据训练深度学习模型,许多人都认为这是AI未来发展的关键。英伟达在《Training Deep Learning with Synthetic Data》论文中提出了一些新的想法。

论文链接:

https://arxiv.org/abs/1804.06516

在《Learning from the Experts》一文中,展示了如何使用专家系统合成数据。

论文链接:

https://arxiv.org/abs/1804.08033

最后,还有一种方法是“weak supervision”,可以减少对大量手工标注数据的需求。Snorkel是一个非常有趣的项目,想要提供了一个通用的框架,来推进这种方法。

项目地址:

https://blog.acolyer.org/2018/08/22/snorkel-rapid-training-data-creation-with-weak-supervision/amp/?__twitter_impression=true

Amatriain说,就AI领域更为基础的突破,今年并没有看到太多。

但他不同意Hinton的看法,即认为缺乏创新是因为这个领域年轻人太多,资深的人太少。

在他看来,缺乏突破的主要原因是,现有的方法仍旧有许多地方可以应用,因此很少有人去冒险近尝试不切实际的想法。尤其是当前大多数研究都是由大公司资助的,让这一特点更加突出了。

不过,还是有一些人在尝试,代表性的论文有两篇。

论文链接:

https://arxiv.org/pdf/1803.01271.pdf

虽然这篇论文是高度实验性的,并且使用的是已知的方法,但它打开了新方法的大门。因为它证明了现有的最佳方法,并不是最好的。

论文链接:

https://arxiv.org/abs/1806.07366

这篇论问是最近NeurIPS最佳论文获得者,它挑战了深度学习中的一些基本内容,包括层本身的概念。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30280

    浏览量

    268514
  • 深度学习
    +关注

    关注

    73

    文章

    5493

    浏览量

    121014
  • nlp
    nlp
    +关注

    关注

    1

    文章

    487

    浏览量

    22017

原文标题:2018年ML/AI重大进展有哪些?LeCun推荐了这篇回答

文章出处:【微信号:worldofai,微信公众号:worldofai】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    RISC-V在AI领域的发展前景怎么样?

    随着人工智能的不断发展,现在的视觉机器人,无人驾驶等智能产品的不断更新迭代,发现ARM占用很大的市场份额,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V在AI领域有哪些参考方案?
    发表于 10-25 19:13

    AI大模型的最新研究进展

    AI大模型的最新研究进展体现在多个方面,以下是对其最新进展的介绍: 一、技术创新与突破 生成式AI技术的爆发 : 生成式AI技术正在迅速发展
    的头像 发表于 10-23 15:19 338次阅读

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域AI技术将帮助科学家们更加
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    计算的结合 我深刻体会到高性能计算(HPC)在AI for Science中的重要性。传统的科学计算往往面临计算量大、计算时间长等问题,而AI技术的引入可以显著提高计算效率。同时,HPC也为A
    发表于 10-14 09:16

    鸿海集团AI和电动车领域的业务进展

    此外,英伟达新一代GB200 AI服务器准备就绪,第一批用户是北美的云计算服务商;而在电动车领域,鸿海计划进军美国和日本市场,并期望在未来占据欧洲市场份额。该公司董事长刘扬伟目前正在欧洲进行重要商务谈判。
    的头像 发表于 05-15 09:27 286次阅读

    基于 Renesas 的 RA8M1 实现 AIML 部署

    作者:Kenton Williston 人工智能 (AI)、机器学习 (ML) 和其他计算密集型工作负载在物联网 (IoT) 网络边缘的兴起,给微控制器 (MCU) 带来了额外的处理负载。处理这些
    的头像 发表于 04-23 15:04 1167次阅读
    基于 Renesas 的 RA8M1 实现 <b class='flag-5'>AI</b> 和 <b class='flag-5'>ML</b> 部署

    新型的FPGA器件将支持多样化AI/ML创新进程

    作者:郭道正 职务:Achronix半导体中国区总经理 近日举办的GTC大会把人工智能/机器学习(AI/ML领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代
    的头像 发表于 04-02 15:25 311次阅读
    新型的FPGA器件将支持多样化<b class='flag-5'>AI</b>/<b class='flag-5'>ML</b>创新进程

    国产GPU在AI大模型领域的应用案例一览

    电子发烧友网报道(文/李弯弯)近一多时间,随着大模型的发展,GPU在AI领域重要性再次凸显。虽然相比英伟达等国际大厂,国产GPU起步较晚、声势较小。不过近几年,国内不少GPU厂商成
    的头像 发表于 04-01 09:28 3694次阅读
    国产GPU在<b class='flag-5'>AI</b>大模型<b class='flag-5'>领域</b>的应用案例一览

    Achronix新推出一款用于AI/ML计算或者大模型的B200芯片

    近日举办的GTC大会把人工智能/机器学习(AI/ML领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代的来临
    的头像 发表于 03-28 15:48 759次阅读
    Achronix新推出一款用于<b class='flag-5'>AI</b>/<b class='flag-5'>ML</b>计算或者大模型的B200芯片

    是德科技推出AI数据中心测试平台旨在加速AI/ML网络验证和优化的创新

    20242月29日,是德科技(Keysight Technologies,Inc.)宣布,针对人工智能(AI)和机器学习(ML)基础设施生态系统,推出了 AI数据中心测试平台,旨在加
    的头像 发表于 02-29 09:32 598次阅读
    是德科技推出<b class='flag-5'>AI</b>数据中心测试平台旨在加速<b class='flag-5'>AI</b>/<b class='flag-5'>ML</b>网络验证和优化的创新

    国际最新AI算力评测标准SPEC ML即将发布,浪潮信息连任SPEC ML主席

    国际权威标准性能评估组织SPEC第35届年会日前在美国举行。会上,SPEC组织确定新一工作计划,为推动AI算力产业的更快发展,国际最新AI算力评测标准SPEC ML即将发布,该标准由
    的头像 发表于 02-24 19:07 3597次阅读
    国际最新<b class='flag-5'>AI</b>算力评测标准SPEC <b class='flag-5'>ML</b>即将发布,浪潮信息连任SPEC <b class='flag-5'>ML</b>主席

    AI视频大爆发!2023AI视频生成领域的现状全盘点

    2023,也是AI视频元年。过去一究竟有哪些爆款应用诞生,未来视频生成领域面临的难题还有哪些?
    的头像 发表于 02-20 10:40 1154次阅读
    <b class='flag-5'>AI</b>视频<b class='flag-5'>年</b>大爆发!2023<b class='flag-5'>年</b><b class='flag-5'>AI</b>视频生成<b class='flag-5'>领域</b>的现状全盘点

    Supermicro推新AI存储方案,助力AIML应用加速

    Supermicro首席执行官梁见后先生高瞻远瞩地指出:针对AIML应用的加速处理,我们推荐配置以每机柜20 PB高速闪存为主,配备四个NVIDIA HGX H100系列优化版8-GPU气冷服务器或者八个同款液冷服务器。
    的头像 发表于 02-03 14:46 602次阅读

    深入探讨工业AI/ML技术的发展趋势及相关解决方案

    芯科科技已经创建了一套完整的硬件和软件解决方案,可支持开发用于工业市场的工业AI/ML解决方案。具体来说,我们的Sub-GHz、蓝牙和802.15.4产品内置了硬件加速功能,可优化边缘的AI/
    的头像 发表于 01-29 09:42 465次阅读

    Google Cloud 推出 TPU v5p 和 AI Hypercomputer: 支持下一代 AI 工作负载

    生成式 AI 模型正在迅速发展,提供了前所未有的精密性和功能。这项技术进展得以让各行各业的企业和开发人员能够解决复杂的问题,开启新的机遇之门。然而,生成式 AI 模型的增长也导致训练、调整和推理方面的要求变得更加严苛。过去五
    的头像 发表于 12-13 16:05 554次阅读
    Google Cloud 推出 TPU v5p 和 <b class='flag-5'>AI</b> Hypercomputer: 支持下一代 <b class='flag-5'>AI</b> 工作负载