0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

2019年需要关注的5种人工智能趋势

8gVR_D1Net08 来源:工程师曾玲 2018-12-30 09:08 次阅读

人们将继续看到2019年及以后的机器学习人工智能相关技术的进步。亚马逊、苹果、Facebook、谷歌、IBM和微软等公司正在投资研发人工智能,这将有助于生态系统将人工智能接近最终消费者。

在2018年,人们目睹了基于机器学习和人工智能的平台、工具和应用程序的急剧增长。这些技术不仅影响了软件和互联网行业的发展,还影响了医疗保健、法律、制造业、汽车和农业等其他垂直行业。

人们将继续看到2019年及以后的机器学习和人工智能相关技术的进步。亚马逊、苹果、Facebook、谷歌、IBM和微软等公司正在投资研发人工智能,这将有助于生态系统将人工智能接近最终消费者。

以下是2019年人们需要关注的5种人工智能趋势:

(1)人工智能芯片的兴起

与其他软件不同,人工智能十分依赖专用处理器来对CPU提供计算能力的补充。即使是最快和最先进的CPU也可能无法提高人工智能模型的训练速度。在推理时,该模型需要额外的硬件来执行复杂的数学计算,以加速对象检测和面部识别等任务。

2019年,英特尔、NVIDIA、AMDARM高通芯片制造商将推出专用芯片,加速执行支持人工智能的应用程序。这些芯片将针对与计算机视觉、自然语言处理和语音识别相关的特定用例和场景进行优化。来自医疗保健和汽车行业的下一代应用将依赖这些芯片为最终用户提供智能服务。

2019年也将是亚马逊、微软、谷歌和Facebook等超大规模基础设施厂商将增加对基于现场可编程门阵列(FPGA)和专用集成电路(ASIC)的定制芯片投资的一年。这些芯片将针对基于人工智能和高性能计算(HPC)运行现代工作负载进行大量优化。其中一些芯片还将协助下一代数据库加速查询处理和预测分析。

早期项目是:亚马逊的Nitro、谷歌Cloud TPU,微软Project Brainwave、英特尔Myriad X VPU

(2)边缘的物联网和人工智能的融合

在2019年,人工智能在边缘计算层将与物联网结合。在公共云中训练的大多数模型将部署在边缘。

工业物联网是人工智能的顶级用例,可以执行异常检测、根本原因分析和设备的预测性维护。

基于深度神经网络的高级机器学习模型将进行优化以在边缘运行。他们将能够处理视频帧、语音合成、时间序列数据和由摄像机、麦克风和其他传感器等设备生成的非结构化数据。

物联网将成为企业人工智能的最大驱动力。边缘设备将配备基于FPGA和ASIC的专用人工智能芯片。

早期项目是:支持机器学习推理的AWS Greengrass、Azure IoT Edge人工智能工具包、Google Cloud IoT Edge、FogHorn Lightning Edge Intelligence和TIBCO公司的Project Flogo。

(3)神经网络之间的互操作性成为关键

开发神经网络模型的关键挑战之一在于选择正确的框架。数据科学家和开发人员必须从多种选择中选择合适的工具,包括Caffe2、PyTorch、Apache MXNet、Microsoft Cognitive Toolkit和TensorFlow。一旦模型在特定框架中进行了训练和评估,就很难将训练好的模型移植到另一个框架中。

神经网络工具箱之间缺乏互操作性阻碍了人工智能的采用。为了解决这一挑战,AWS、Facebook和Microsoft合作建立了开放式神经网络交换(ONNX),这使得在多个框架中重用经过训练的神经网络模型成为可能。

在2019年,开放式神经网络交换(ONNX)将成为该行业的重要技术。从研究人员到边缘设备制造商,生态系统的所有关键参与者都将依赖ONNX作为推理的标准运行时间。

早期项目是:Windows 10附带运行ONNX、英特尔公司支持ONNX的OpenVINO工具包。

(4)自动化机器学习将更加突出

从根本上改变基于机器学习的解决方案的一个趋势是AutoML。它将使业务分析师和开发人员能够开发可以解决复杂场景的机器学习模型,而无需经过机器学习模型的典型训练过程。

在处理AutoML平台时,业务分析师会专注于业务问题,而不是迷失在工作流程中。

AutoML完全适用于认知API和自定义机器学习平台之间。它提供了正确的自定义级别,而无需强迫开发人员完成精心设计的工作流程。与通常被视为黑盒子的认知API不同,AutoML具有相同程度的灵活性,但自定义数据与可移植性相结合。

早期项目是:DataRobot、Google Cloud AutoML、Microsoft自定义认知API、亚马逊Comprehend的自定义实体。

(5)人工智能将通过AIOps使DevOps实现自动化

现代应用程序和基础设施正在生成日志数据,这些数据被捕获以用于索引、搜索和分析。从硬件、操作系统、服务器软件和应用软件中获得的大量数据集可以被聚合和关联,以发现洞察力和模式。当机器学习模型应用于这些数据集时,IT操作从被动转变为预测。

当人工智能的强大功能应用于运营时,它将重新定义基础设施的管理方式。机器学习和人工智能在IT运营和DevOps中的应用将为组织提供智能。它将帮助运营团队进行精确和准确的根本原因分析。

AIOps(智能运营)将在2019年成为主流。公共云供应商和企业将从人工智能和DevOps的融合中受益。

早期项目是: Moogsoft AIOps、Amazon EC2 Predictive Scaling、Azure VM resiliency、Amazon S3 Intelligent Tiering机器学习和人工智能将成为2019年的关键技术趋势。从业务应用到IT支持,人工智能将对行业产生重大影响。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 物联网
    +关注

    关注

    2910

    文章

    44778

    浏览量

    374748
  • 人工智能
    +关注

    关注

    1792

    文章

    47443

    浏览量

    239020
  • 机器学习
    +关注

    关注

    66

    文章

    8425

    浏览量

    132776

原文标题:2019年值得关注的人工智能技术的五大趋势

文章出处:【微信号:D1Net08,微信公众号:AI人工智能D1net】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    2025六大技术趋势:空间计算、人工智能、IT升级……

    12月13日,德勤发布《2025技术趋势》(TechTrends2025)报告,深入探讨了人工智能在日常生活中逐步应用的广度与深度。报告指出,未来人工智能将成为我们生活中的核心组成部
    的头像 发表于 12-18 13:15 576次阅读
    2025<b class='flag-5'>年</b>六大技术<b class='flag-5'>趋势</b>:空间计算、<b class='flag-5'>人工智能</b>、IT升级……

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制化设计。它广泛应用于各种
    发表于 11-14 16:39

    FPGA应用于人工智能趋势

    FPGA(现场可编程门阵列)在人工智能领域的应用趋势日益显著,主要归因于其高速、低功耗、灵活性和并行处理能力等独特优势。以下是对FPGA应用于人工智能趋势的分析: 一、FPGA在
    的头像 发表于 10-25 09:20 834次阅读

    未来学家展望 2025 十大人工智能趋势

    美国《福布斯》杂志网站9月24日刊登题为《人人都必须为2025的十大人工智能趋势做好准备》的文章,作者为未来学家伯纳德·马尔,内容编译如下:毫无疑问,人工智能仍将是2025
    的头像 发表于 10-15 08:06 482次阅读
    未来学家展望 2025 <b class='flag-5'>年</b>十大<b class='flag-5'>人工智能</b><b class='flag-5'>趋势</b>

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    和国际合作等多个层面。这些内容让我更加认识到,在推动人工智能与能源科学融合的过程中,需要不断探索和创新,以应对各种挑战和机遇。 最后,通过阅读这一章,我深刻感受到人工智能对于能源科学的重要性。
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    5. 展望未来 最后,第一章让我对人工智能驱动的科学创新未来充满了期待。随着技术的不断进步和应用场景的拓展,AI将在更多领域发挥关键作用,从基础科学到应用科学,从理论研究到实践应用,都将迎来前所未有
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    是一些未来发展趋势: 市场规模持续增长 :据多家研究机构和公司的预测,RISC-V的市场规模将持续增长。到2030,RISC-V处理器有望占据全球市场近四分之一的份额。这将为RISC-V在人工智能
    发表于 09-28 11:00

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    关于人工智能的60条趋势预测

    2023是技术发展的分水岭,生成式人工智能成为主流。2024伊始,生成式AI的格局预计将迅速发展,带来一系列有望改变技术及其应用的趋势。这些趋势
    的头像 发表于 02-21 08:26 719次阅读
    关于<b class='flag-5'>人工智能</b>的60条<b class='flag-5'>趋势</b>预测