0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

群雄混战 AI芯片设计面临的挑战与趋势

cMdW_icsmart 来源:cg 2019-01-07 16:48 次阅读

2018年以来,不少以算法为主的语音、视觉、自动驾驶公司也开始研发AI芯片,将算法和芯片进行更好的结合,来针对多样化的场景,未来软硬结合将会是趋势。

随着深度学习和AI应用的不断演进,近两年AI芯片厂商不断涌现,加之贸易摩擦中芯片概念的普及,2018年的AI芯片领域持续火热。在国内,贴上AI芯片标签的公司已经超过40家,其中的佼佼者们获得不菲融资。

尽管目前AI在行业应用方面的渗透有限,但是算力的供需还是不平衡。近日,华为智能计算业务部总裁邱隆就向21世纪经济报道记者表示:“原来由摩尔定律驱动的计算产业,面对爆发式的计算需求无以为继。摩尔定律在正常的时候,以每年1.5倍增长,50%的算力增长,在过去几年间,每年的算力实际增长只有10%。人工智能在过去几年间,算力增长了30万倍,至少每一年我们的算力要增长10倍。”

这意味着人工智能除了算法外,对算力也存在强大的需求。面对增多的B端应用场景,也有更多的AI芯片公司加入角逐。从功能角度细分,AI芯片可分为训练芯片和推理芯片,在训练方面,目前英伟达独树一帜,但是在推理方面,可选择的芯片种类不只是GPU,还有FPGA(现场可编程门阵列)、ASIC(专用集成电路)等。在各个分类中,芯片巨头们各有千秋,接下来还要考验落地情况。

群雄混战

芯片目前主要是提供算力支持,2018年,AI芯片大厂和创业公司们均有不少新动作。

最大的玩家当属英伟达和英特尔。英伟达的GPU抓住了计算设备需求的关键时机,在图形渲染、人工智能和区块链领域的计算表现突出,希望成为真正的算力平台,其中,英伟达在训练方面的代表芯片就是TeslaV100。由于英伟达GPU布局AI的时间早于英特尔、赛灵思等公司,整体生态较为完整,产品在IT公司中得到广泛应用。

英特尔则通过收购案来弥补AI芯片的赛道:2015年167亿美金收购FPGA巨头Altera。FPGA在云计算物联网、边缘计算等方面有很大的潜力。随着5G浪潮的到来,物联网的数据分析及计算需求会暴增,物联网的接入节点至少是数百亿级的规模,比手机规模要高出1-2个数量级。物联网的典型需求是需要灵活使用算法的变化,这是FPGA的强项,FPGA可以通过自身结构的改变来适应定制化计算场景的需求,能为不同类型的设备提供高效芯片。

同时,英特尔还收购了Nervana,计划用这家公司在深度学习方面的能力来对抗GPU,Nervana的最新版深度学习芯片将在2019年量产。此外,英特尔还收购了视觉处理芯片初创公司Movidius、自动驾驶公司Mobileye。

算法巨头谷歌则另辟蹊径,以ASIC类型的芯片来满足自身需求。具体来看,谷歌的TPU通过脉动阵列(systolicarray)这一核心架构来提升算力,2018年发布的TPU3.0版本采用8位低精度计算节省晶体管,速度能加快最高100PFlops(每秒1000万亿次浮点计算)。

再看国内,华为在2018年10月发布了两颗AI芯片——昇腾910(max)和昇腾310(mini)。昇腾910主要用于云端计算,其半精度算力达到了256TFLOPS,预计将于2019年第二季度量产;昇腾310用于终端低功耗场景,拥有8TFLOPS半精度计算力,目前已经量产,但是并不对外销售。

国内的明星初创企业也纷纷获得投资或者收购。2018年中,寒武纪推出面向数据中心市场云端智能芯片MLU100,浪潮、联想、曙光的AI服务器产品将搭载MLU100芯片。但是在手机端,华为麒麟芯片将用达芬奇架构代替寒武纪架构。另一家公司地平线选择自动驾驶的场景,奥迪是其合作伙伴。产品包括基于旭日2.0处理器架构的XForce边缘AI计算平台、基于征程(Journey)2.0架构的地平线Matrix自动驾驶计算平台、核心板旭日X1600、智能摄像机解决方案等。

深鉴科技则在2018年被赛灵思收购,价格约3亿美元。深鉴科技一方面提供基于神经网络深度压缩技术和DPU平台,为深度学习提供端到端的解决方案。另一方面通过神经网络与FPGA的协同优化,提供高性价比的嵌入式端与云端的推理平台,已应用于安防、数据中心、汽车等领域。

挑战与趋势

整体而言,英伟达的实力在第一梯队,但是竞争者众多,除了上述企业外,AMD高通联发科三星等公司均在AI芯片上有所布局,并且战况愈发激烈。

不过,目前在AI芯片领域没有哪一家占据绝对优势,集邦咨询向21世纪经济报道记者表示:“初创企业方面,就我们的观察,毕竟仍在草创阶段,客户的采用意愿,以及导入后,终端市场的接受状况,将是未来需要观察的地方。总结来看,还是国际芯片大厂的布局速度较快。”

从国内和国外的角度看,一位AI业内人士告诉21世纪经济报道记者:“国内外主要是技术结构上的差距,底层技术科学上和国外的差距显著,但是应用层面上差距不大,甚至有创新的应用点。不少AI芯片公司通过定制化服务小规模客户,针对B端场景进行开发,比如专门处理语音、图像。”

同时,AI芯片也面临不少挑战,杜克大学教授陈怡然就曾提到,AI芯片在设计方面有四大挑战。

其一是大容量存储和高密度计算,当神经深度学习网络的复杂度越来越高的时候,参数也会越来越多,怎么处理是一大难题;第二个挑战是要面临特定领域的架构设计,因为场景越来越丰富,这些场景的计算需求是完全不一样的。怎么样通过对于不同的场景的理解,设置不同的硬件架构变得非常重要。

第三个挑战是芯片设计要求高,周期长,成本昂贵。从芯片规格设计、芯片结构设计、RTL设计、物理版图设计、晶圆制造、晶圆测试封装,需要2到3年时间,正常的时间里软件会有一个非常快速的发展。但是算法在这个期间内将会快速更新,芯片如何支持这些更新也是难点。

第四个挑战是架构及工艺。随着工艺不断的提升,从90纳米到10纳米,逻辑门生产的成本到最后变得饱和。也许在速度上、功耗上会有提升,但单个逻辑生产的成本不会再有新的下降。这种情况下如果仍然用几千甚至上万个晶体管去做一个比较简单的深度学习的逻辑,最后在成本上是得不偿失的。

在芯片的产业链中,生产环节主要依靠台积电、格芯等芯片代工厂商。但是国内在设计领域逐步前进,并且AI专用芯片相对于CPU、GPU来说难度没有那么大,因此不少创业公司也为自己精通的行业定制AI芯片。

2018年以来,不少以算法为主的语音、视觉、自动驾驶等公司也开始研发AI芯片,将算法和芯片进行更好的结合,来针对多样化的场景,未来软硬结合将会是趋势。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5506

    浏览量

    121259
  • AI芯片
    +关注

    关注

    17

    文章

    1889

    浏览量

    35089

原文标题:AI芯片群雄争霸,设计面临四大挑战

文章出处:【微信号:icsmart,微信公众号:芯智讯】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    SPEA创新实践:AI芯片混合信号测试仪

    引发的变革,各行业对更强大、更高效的AI芯片的需求持续攀升。AI算法的日益复杂,市场对AI运行速度需求不断提升,测试AI
    的头像 发表于 01-03 11:44 316次阅读
    SPEA创新实践:<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>混合信号测试仪

    AMD MI300X AI芯片面临挑战

    近日,据芯片顾问机构Semianalysis经过5个月的深入调查后指出,AMD最新推出的“MI300X”AI芯片在软件缺陷和性能表现上未能达到预期,因此在挑战NVIDIA市场领导地位方
    的头像 发表于 12-25 10:57 312次阅读

    Cadence如何应对AI芯片设计挑战

    生成式 AI 引领智能革命成为产业升级的核心动力并点燃了“百模大战”。多样化的大模型应用激增对高性能AI 芯片的需求,促使行业在摩尔定律放缓的背景下,加速推进 2.5D、3D 及 3.5D 异构集成技术。与此同时,
    的头像 发表于 12-14 15:27 700次阅读

    亿铸科技熊大鹏探讨AI大算力芯片挑战与解决策略

    在SEMiBAY2024《HBM与存储器技术与应用论坛》上,亿铸科技的创始人、董事长兼CEO熊大鹏博士发表了题为《超越极限:大算力芯片的技术挑战与解决之道》的演讲,深入剖析了AI大模型时代算力
    的头像 发表于 10-25 11:52 413次阅读

    大算力芯片面临的技术挑战和解决策略

    在湾芯展SEMiBAY2024《HBM与存储器技术与应用论坛》上,亿铸科技创始人、董事长兼CEO熊大鹏发表了题为《超越极限:大算力芯片面临的技术挑战和解决策略》的演讲。
    的头像 发表于 10-23 14:50 489次阅读

    AI如何助力EDA应对挑战

    探究当今产业背景和科技潮流中半导体产业所面临挑战与变革时,不难发现,一个至关重要的转折点已经发生——人工智能(AI)的崛起正以前所未有的力量,对电子设计自动化(EDA)乃至整个半导体产业带来颠覆性的变革。
    的头像 发表于 10-17 10:21 581次阅读
    <b class='flag-5'>AI</b>如何助力EDA应对<b class='flag-5'>挑战</b>

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    的深入发展。 3. 挑战与机遇并存 尽管AI在生命科学领域取得了显著的成果,但也面临着诸多挑战。例如,数据隐私、算法偏见、伦理道德等问题都需要我们认真思考和解决。同时,如何更好地将
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    的物理可信度,还为科学研究提供了新的视角和方法。 5. 挑战与未来展望 第二章也提到了AI for Science面临挑战和未来展望。尽管AI
    发表于 10-14 09:16

    伟创力谈制造业面临挑战和发展趋势

    在全球经济新格局下,制造业正面临着一场深刻的变革,产业发展引来了新趋势、新动向。伟创力全球制造与服务业务总裁Paul Baldassari在制造和服务领域有着超过 25 年的从业经验,在近日与SME
    的头像 发表于 08-22 09:25 670次阅读

    苹果AI服务在华面临挑战,寻求本土合作新机遇

    在科技飞速发展的今天,人工智能(AI)已成为各大科技巨头争相布局的新战场。然而,在全球第二大iPhone市场——中国,苹果公司却面临着前所未有的挑战
    的头像 发表于 06-22 16:51 964次阅读

    中国AI芯片行业,自主突破与未来展望

    在全球科技竞赛的舞台上,中国AI芯片行业正面临前所未有的挑战与机遇。近日,Gartner研究副总裁盛陵海在一场分享会上深入剖析了中国AI
    的头像 发表于 06-19 17:02 793次阅读

    芯片功耗提升,散热面临挑战

    芯片功耗提升,散热重要性凸显1,芯片性能提升催生散热需求,封装材料市场稳健增长AI需求驱动硬件高散热需求。根据Canalys预测,兼容AI的个人电脑将从2025年开始快速普及,预计至2
    的头像 发表于 06-05 08:10 1170次阅读
    <b class='flag-5'>芯片</b>功耗提升,散热<b class='flag-5'>面临</b><b class='flag-5'>挑战</b>!

    AI芯片哪里买?

    AI芯片
    芯广场
    发布于 :2024年05月31日 16:58:19

    苹果AI时代面临挑战,需对战略进行重大改变

    古尔曼表示,苹果CEO蒂姆·库克面临的最大挑战就是如何在AI领域实现后发制人,赢得竞争。苹果的优势在于雄厚的财力、优秀的人才以及强大的平台,但这些优势需要通过战略调整来发挥,同时也需要借助外部力量。
    的头像 发表于 05-20 10:37 562次阅读

    人工智能芯片在先进封装面临的三个关键挑战

    IC封装面临的制造挑战有哪些?人工智能芯片的封装就像是一个由不同尺寸和形状的单个块组成的拼图,每一块都对最终产品至关重要。这些器件通常集成到2.5DIC封装中,旨在减少占用空间并最大限度地提高带宽。图形处理单元(GPU)和多个3
    的头像 发表于 05-08 08:27 1578次阅读
    人工智能<b class='flag-5'>芯片</b>在先进封装<b class='flag-5'>面临</b>的三个关键<b class='flag-5'>挑战</b>